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Introduction

I EtherNet/IP is a TCP/IP-based industrial protocol commonly
used in industrial control systems (ICS)

I Using a custom Scapy-based fuzzer, we uncover a previously
unreported denial-of-service (DoS) vulnerability in the
Ethernet/IP implementation of the Rockwell
Automation/Allen-Bradley MicroLogix 1100 PLC

I ICS-CERT recently announces this vulnerability in the security
advisory ICSA-17-138-03
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Introduction

I Modern industrial network protocols have evolved from
serial-based fieldbus protocols to TCP/IP-based protocols that
are transported over standard Ethernet links

I Common Industrial Protocol (CIP) [21] and
Ethernet/Industrial Protocol (EtherNet/IP) [22] are two
well-known Open DeviceNet Vendors Association (ODVA)
TCP/IP-based industrial protocols used by large number of
industrial automation vendors

I Rockwell Automation/Allen-Bradley (RA/AB) PLCs (e.g.,
ControlLogix and MicroLogix) implement these protocols

3 / 37



Introduction

I Fuzz testing, or fuzzing, is a penetration testing technique to
verify the robustness of target software in handling invalid,
malformed, or unexpected input data

I Fuzzing the implementations of control network protocols is
an important step towards developing more secure industrial
control systems

I Little information has been made publicly available on the
vulnerabilities of the EtherNet/IP software used in commercial
PLCs

I To examine the robustness of the EtherNet/IP implemenation
of select RA/AB devices, we create a fuzz testing tool (ENIP
Fuzz) using Scapy, a Python module used for packet parsing
and crafting [19]
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Introduction

I A Scapy-based fuzzer for exploiting EtherNet/IP security
vulnerabilities

I Remote fault detection strategy

I Deficiency in MicroLogix’s handling of the Programmable
Controller Communication Commands (PCCC) protocol

I Preliminary exploration of potential cross-generational
vulnerabilities
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EtherNet/IP Protocols

Common Industrial Protocol (CIP)

I objects: particular component within a product

I class: a set of objects of the same component

I object instance: actual representation of particular object

I instance: class or object share same attributes, but has own
unique values [21]

EtherNet/IP

I Allow CIP communications to be transported over standard
Ethernet

I TCP and UDP over port 44818

I Implicit messaging enables exchange of scheduled,
time-critical control data [22]

I Explicit messaging provides general request reply/reply
communication [22]
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EtherNet/IP Protocols

Programmable Controller Communication Commands (PCCC)

I Provides legacy support for older RA/AB PLCs, e.g., PLC5
and SLC500 [7]

I Used with EtherNet/IP, encapsulated in CIP

I Encapsulation is accomplished through ”Execute PCCC” CIP
service (service code = 0x4B)

I Each message contains command code and function code
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Fuzzing Methodologies

Mutation-based fuzzers

I Apply transformations (mutations) on existing data samples
to create test cases

I Brute force testing

Generation-based fuzzers

I Test cases employ rules defining a grammar-based
specification for inputs

I Requires up-front understanding of specification or source
code
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ICS Protocol Fuzzers

Name Type Protocol Availability
Aegis Fuzzer [2, 3] custom DNP3, Modbus commercially licensed,

early version open-source

Beyond Security’s beSTORM [5] framework several, including DNP3 commercially licensed

blackPeer [10] framework several, including Modbus NA

Codenomicon’s Defensics [11] framework several, including CIP, EtherNet/IP, Modbus, OPC UA
Server, Profinet, Scada GOOSE

commercially licensed

ICCP Fuzzer [13] custom ICCP NA

LZFuzz [9] framework several, including SNMP [20] NA

MTF [25] custom Modbus NA

OPC-MFuzzer [26] custom OPC, DCOM, RPC [18] NA

OPC Server Fuzzer [15] custom OPC Server NA

Peach [16] framework several, including Modbus, BACNet, DNP3, OPC [16,
26]

open-source

ProFuzz [14] custom Profinet open-source

scada-tools [24, 23] custom Profinet open-source

Sulley [17] framework several, including Modbus, DNP3, TPKT, COPT [12] open-source

Wuldtech’s Achilles [1] custom several, including EtherNet/IP, Foundation Fieldbus,
MMS, Modbus, OPC UA, Profinet, DNP3, MMS, SES-
92

commercially licensed
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Design and Implementation

Fuzzers operate under two basic assumptions:

I Faults in a target application can be triggered through input
controlled by the user

I The execution of a faulty portion of an application will result
in some behavioral manifestation (e.g., bricking the device or
producing unexpected output)
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Implementation of Support Library

I Library uses Scapy, a Python module used for packet crafting
and manipulation

I Library conforms to EtherNet/IP specifications [22, 21]

I ENIP Fuzz is complete in its support of EtherNet/IP and one
fourth of CIP specification

I EtherNet/IP traffic characterized from ICS lab environment,
which included the AB/RA MicroLogix 1100 and ControlLogix
5570
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Implementation of Fuzzer

EtherNet/IP Register Session Request

I Used for establishing a session between an originator and a
target

I Originator sends Register Session Request on port 0xAF12,
the target shall assign and reply with a Session Handle [22]

CIP NOP Request

I CIP common service request that generates a No Operation
Response [21, §A-4.17]

I Receiver does not execute any other internal action
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Implementation of Fuzzer

Execute PCCC Service

I PCCC is a vendor specific application layer protocol used for
communication between certain RA/AB processors

I Used primarily to “ease communication between legacy
networks and the new CIP networks” [6, p. 7.17]

I The Protected Typed Logical Read with Three Address Fields
command is the specific Execute PCCC Service function
chosen for fuzzing; function is used to read data from a logical
address [6, p. 7.17].
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Fault Monitoring

Liveness Check

I Remote analysis to determine crashes occurred

I TCP RST Flag for indicating target device has crashed [20]

I Socket timeout, reset, or close; failure in reopening a closed
socket; and failure in opening a new socket [25]

Unexpected responses

I Filter for responses outside of specification

Performance degradation

I Malformed packets impacting timely delivery of responses may
be considered soft failure

I Records captured during fuzzing are compared to baseline and
analyzed for irregularities in response times
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Test Environment

SUT
I MicroLogix 1100

Fuzzer
I Kali 2.0 VM with the fuzzer

Background traffic generators
I Windows 7 Virtual Machine with RSLinx
I Kali 2.0 VM with the Ping Utility

Monitor
I Mac OS X running Wireshark
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Experimentation

I A liveness check is performed using the Ping utility to
determine that the target is still responsive

I Monitor the latency in responses to both ICMP Echo requests
and EtherNet/IP requests made by the RSLinx

I SUT is also monitored for unexpected responses, i.e.,
responses outside the EtherNet/IP specification or otherwise
incorrect (e.g., responses that contain erroneous data).
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Results and Analysis

I Three metrics were used for analysis: the deltas between
ICMP Echo requests from Ping, List Identity requests from
RSLinx, and the response from the service request being
fuzzed

I SUT interacts with the traffic generators during “warm-up
period,” fuzzer sends either correctly formed packets (during
baseline) or malformed packets (during testing) for a period of
approximately 20 minutes

I Wireshark packet capture of the fuzzing session is then
truncated into a 10 minute window, after which each of the
metrics is analyzed

I Each delta is calculated by taking the difference between the
timestamp of the response and the request.
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Results and Analysis

I Three baseline measurements and fourteen trials were
performed

I Each baseline and trial was repeated twice

Trial Name Field Fuzzed
enip-register-session-baseline NA
enip-register-session-fuzz-protocol-version Version
enip-register-session-fuzz-option-flag Options
enip-register-session-fuzz-protocol-option Version,Options
cip-nop-baseline NA
cip-nop-fuzz-class Class
cip-nop-fuzz-instance Instance
cip-nop-fuzz-class-instance Class,Instance
pccc-exec-baseline NA
pccc-exec-fuzz-byte Byte Size
pccc-exec-fuzz-file-no File Number
pccc-exec-fuzz-file-type File Type
pccc-exec-fuzz-element Element No.
pccc-exec-fuzz-all File No., File Type, Element No.
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Response Time Analysis

I Deltas in response times from ICMP Echo requests and List
Identity requests may not be meaningful metrics

I Using Tukey’s Honest Significant Difference (HSD) test there
is no significant difference in response times when fuzzing
compared to when sending non-malformed traffic
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Response Time Analysis
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Response Time Analysis
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Response Time Analysis

I Tests against Execute PCCC Service shows some sensitivity
with performance metrics

I More testing warranted to claim fuzzed inputs were
responsible for performance degradation
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Response Time Analysis
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Denial-of-Service Fault

I When fuzzing the Execute PCCC Service, we discover a
previously unreported DoS vulnerability

I To clear fault, device must be power-cycled and reset using
RSLogix Clear Major Fault utility

I SUT used to test fault condition is a MicroLogix 1100 PLC
(1763-L16BWA Series B, FRN 14)
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Denial-of-Service Fault

I To exploit the vulnerability, the attacker sends a single
Execute PCCC Service - Protected Typed Logical Read with
Three Address Fields packet with a File Number of 0x02–0x08
and File Type 0x48 or 0x47. Any combination of File Number
0x02–0x08 and File Type 0x48 or 0x47 will trigger a Major
Error (0x08)

I Data files store status and data information associated with
instructions used in ladder subroutines [8, p. 40–41]
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ControlLogix Experiment

I We speculate that the same PCCC vulnerability could
potentially exist in newer RA/AB PLC models

I Same PCCC stress tests on the ControlLogix 5570 did not
cause expected DoS fault

I Experiment yields insight into the differences in the way
MicroLogix and ControlLogix respond to the Protected Typed
Logical Read with Three Address Fields PCCC command
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ControlLogix Experiment

I A PCCC reply always has a status (STS) byte, and for some
commands, an extended status (EXT STS) byte

I MicroLogix only returns the STS byte (0x10= ”Illegal
command or format”) whereas ControlLogix returns both STS
and EXT STS bytes– STS = 0xF0 (”Error code in the EXT
STS byte”) and EXT STS = 0x06 (”Address doesn’t point to
something usable”)[6]

I Functional difference indicates that it may be more valuable
to fingerprint PLCs using information at the application level
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Future Work

I EtherNet/IP support library can be expanded so that is fully
compliant with specifications

I Testing TCP and IP layers may expose vulnerabilities in the
ENIP/IP implementation

I Explore EtherNet/IP implementations across related products,
i.e., products that conforms to the ODVA specification or
deemed interoperable with related models

I OpENer is a POSIX-compliant implementation of ENIP that
is partially supported by Rockwell Automation [4]
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Questions

Francisco Tacliad - francisco.tacliad@gmail.com
Thuy D. Nguyen, Naval Postgraduate School, tdnguyen@nps.edu
Mark Gondree, Sonoma State University, gondree@sonoma.edu
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