
DoS Exploitation of Allen-Bradley’s Legacy
Protocol through Fuzz Testing*

Francisco Tacliad Thuy D. Nguyen Mark Gondree

*The views expressed in this material are those of the authors and do not reflect
the official policy or position of the Naval Postgraduate School, the Department

of Defense, or the U.S. Government.

December 5, 2017

1 / 37



Introduction

I EtherNet/IP is a TCP/IP-based industrial protocol commonly
used in industrial control systems (ICS)

I Using a custom Scapy-based fuzzer, we uncover a previously
unreported denial-of-service (DoS) vulnerability in the
Ethernet/IP implementation of the Rockwell
Automation/Allen-Bradley MicroLogix 1100 PLC

I ICS-CERT recently announces this vulnerability in the security
advisory ICSA-17-138-03

2 / 37



Introduction

I Modern industrial network protocols have evolved from
serial-based fieldbus protocols to TCP/IP-based protocols that
are transported over standard Ethernet links

I Common Industrial Protocol (CIP) [21] and
Ethernet/Industrial Protocol (EtherNet/IP) [22] are two
well-known Open DeviceNet Vendors Association (ODVA)
TCP/IP-based industrial protocols used by large number of
industrial automation vendors

I Rockwell Automation/Allen-Bradley (RA/AB) PLCs (e.g.,
ControlLogix and MicroLogix) implement these protocols

3 / 37



Introduction

I Fuzz testing, or fuzzing, is a penetration testing technique to
verify the robustness of target software in handling invalid,
malformed, or unexpected input data

I Fuzzing the implementations of control network protocols is
an important step towards developing more secure industrial
control systems

I Little information has been made publicly available on the
vulnerabilities of the EtherNet/IP software used in commercial
PLCs

I To examine the robustness of the EtherNet/IP implemenation
of select RA/AB devices, we create a fuzz testing tool (ENIP
Fuzz) using Scapy, a Python module used for packet parsing
and crafting [19]

4 / 37



Introduction

I A Scapy-based fuzzer for exploiting EtherNet/IP security
vulnerabilities

I Remote fault detection strategy

I Deficiency in MicroLogix’s handling of the Programmable
Controller Communication Commands (PCCC) protocol

I Preliminary exploration of potential cross-generational
vulnerabilities

5 / 37



EtherNet/IP Protocols

Common Industrial Protocol (CIP)

I objects: particular component within a product

I class: a set of objects of the same component

I object instance: actual representation of particular object

I instance: class or object share same attributes, but has own
unique values [21]

EtherNet/IP

I Allow CIP communications to be transported over standard
Ethernet

I TCP and UDP over port 44818

I Implicit messaging enables exchange of scheduled,
time-critical control data [22]

I Explicit messaging provides general request reply/reply
communication [22]

6 / 37



EtherNet/IP Protocols

Programmable Controller Communication Commands (PCCC)

I Provides legacy support for older RA/AB PLCs, e.g., PLC5
and SLC500 [7]

I Used with EtherNet/IP, encapsulated in CIP

I Encapsulation is accomplished through ”Execute PCCC” CIP
service (service code = 0x4B)

I Each message contains command code and function code

7 / 37



Fuzzing Methodologies

Mutation-based fuzzers

I Apply transformations (mutations) on existing data samples
to create test cases

I Brute force testing

Generation-based fuzzers

I Test cases employ rules defining a grammar-based
specification for inputs

I Requires up-front understanding of specification or source
code

8 / 37



ICS Protocol Fuzzers

Name Type Protocol Availability
Aegis Fuzzer [2, 3] custom DNP3, Modbus commercially licensed,

early version open-source

Beyond Security’s beSTORM [5] framework several, including DNP3 commercially licensed

blackPeer [10] framework several, including Modbus NA

Codenomicon’s Defensics [11] framework several, including CIP, EtherNet/IP, Modbus, OPC UA
Server, Profinet, Scada GOOSE

commercially licensed

ICCP Fuzzer [13] custom ICCP NA

LZFuzz [9] framework several, including SNMP [20] NA

MTF [25] custom Modbus NA

OPC-MFuzzer [26] custom OPC, DCOM, RPC [18] NA

OPC Server Fuzzer [15] custom OPC Server NA

Peach [16] framework several, including Modbus, BACNet, DNP3, OPC [16,
26]

open-source

ProFuzz [14] custom Profinet open-source

scada-tools [24, 23] custom Profinet open-source

Sulley [17] framework several, including Modbus, DNP3, TPKT, COPT [12] open-source

Wuldtech’s Achilles [1] custom several, including EtherNet/IP, Foundation Fieldbus,
MMS, Modbus, OPC UA, Profinet, DNP3, MMS, SES-
92

commercially licensed

9 / 37



Design and Implementation

Fuzzers operate under two basic assumptions:

I Faults in a target application can be triggered through input
controlled by the user

I The execution of a faulty portion of an application will result
in some behavioral manifestation (e.g., bricking the device or
producing unexpected output)

10 / 37



Implementation of Support Library

I Library uses Scapy, a Python module used for packet crafting
and manipulation

I Library conforms to EtherNet/IP specifications [22, 21]

I ENIP Fuzz is complete in its support of EtherNet/IP and one
fourth of CIP specification

I EtherNet/IP traffic characterized from ICS lab environment,
which included the AB/RA MicroLogix 1100 and ControlLogix
5570

11 / 37



Implementation of Fuzzer

EtherNet/IP Register Session Request

I Used for establishing a session between an originator and a
target

I Originator sends Register Session Request on port 0xAF12,
the target shall assign and reply with a Session Handle [22]

CIP NOP Request

I CIP common service request that generates a No Operation
Response [21, §A-4.17]

I Receiver does not execute any other internal action

12 / 37



Implementation of Fuzzer

Execute PCCC Service

I PCCC is a vendor specific application layer protocol used for
communication between certain RA/AB processors

I Used primarily to “ease communication between legacy
networks and the new CIP networks” [6, p. 7.17]

I The Protected Typed Logical Read with Three Address Fields
command is the specific Execute PCCC Service function
chosen for fuzzing; function is used to read data from a logical
address [6, p. 7.17].

13 / 37



Fault Monitoring

Liveness Check

I Remote analysis to determine crashes occurred

I TCP RST Flag for indicating target device has crashed [20]

I Socket timeout, reset, or close; failure in reopening a closed
socket; and failure in opening a new socket [25]

Unexpected responses

I Filter for responses outside of specification

Performance degradation

I Malformed packets impacting timely delivery of responses may
be considered soft failure

I Records captured during fuzzing are compared to baseline and
analyzed for irregularities in response times

14 / 37



Test Environment

SUT
I MicroLogix 1100

Fuzzer
I Kali 2.0 VM with the fuzzer

Background traffic generators
I Windows 7 Virtual Machine with RSLinx
I Kali 2.0 VM with the Ping Utility

Monitor
I Mac OS X running Wireshark

15 / 37



Experimentation

I A liveness check is performed using the Ping utility to
determine that the target is still responsive

I Monitor the latency in responses to both ICMP Echo requests
and EtherNet/IP requests made by the RSLinx

I SUT is also monitored for unexpected responses, i.e.,
responses outside the EtherNet/IP specification or otherwise
incorrect (e.g., responses that contain erroneous data).

16 / 37



Results and Analysis

I Three metrics were used for analysis: the deltas between
ICMP Echo requests from Ping, List Identity requests from
RSLinx, and the response from the service request being
fuzzed

I SUT interacts with the traffic generators during “warm-up
period,” fuzzer sends either correctly formed packets (during
baseline) or malformed packets (during testing) for a period of
approximately 20 minutes

I Wireshark packet capture of the fuzzing session is then
truncated into a 10 minute window, after which each of the
metrics is analyzed

I Each delta is calculated by taking the difference between the
timestamp of the response and the request.

17 / 37



Results and Analysis

I Three baseline measurements and fourteen trials were
performed

I Each baseline and trial was repeated twice

Trial Name Field Fuzzed
enip-register-session-baseline NA
enip-register-session-fuzz-protocol-version Version
enip-register-session-fuzz-option-flag Options
enip-register-session-fuzz-protocol-option Version,Options
cip-nop-baseline NA
cip-nop-fuzz-class Class
cip-nop-fuzz-instance Instance
cip-nop-fuzz-class-instance Class,Instance
pccc-exec-baseline NA
pccc-exec-fuzz-byte Byte Size
pccc-exec-fuzz-file-no File Number
pccc-exec-fuzz-file-type File Type
pccc-exec-fuzz-element Element No.
pccc-exec-fuzz-all File No., File Type, Element No.

18 / 37



Response Time Analysis

I Deltas in response times from ICMP Echo requests and List
Identity requests may not be meaningful metrics

I Using Tukey’s Honest Significant Difference (HSD) test there
is no significant difference in response times when fuzzing
compared to when sending non-malformed traffic

19 / 37



Response Time Analysis

20 / 37



Response Time Analysis

21 / 37



Response Time Analysis

I Tests against Execute PCCC Service shows some sensitivity
with performance metrics

I More testing warranted to claim fuzzed inputs were
responsible for performance degradation

22 / 37



Response Time Analysis

23 / 37



Denial-of-Service Fault

I When fuzzing the Execute PCCC Service, we discover a
previously unreported DoS vulnerability

I To clear fault, device must be power-cycled and reset using
RSLogix Clear Major Fault utility

I SUT used to test fault condition is a MicroLogix 1100 PLC
(1763-L16BWA Series B, FRN 14)

24 / 37



Denial-of-Service Fault

I To exploit the vulnerability, the attacker sends a single
Execute PCCC Service - Protected Typed Logical Read with
Three Address Fields packet with a File Number of 0x02–0x08
and File Type 0x48 or 0x47. Any combination of File Number
0x02–0x08 and File Type 0x48 or 0x47 will trigger a Major
Error (0x08)

I Data files store status and data information associated with
instructions used in ladder subroutines [8, p. 40–41]

25 / 37



26 / 37



ControlLogix Experiment

I We speculate that the same PCCC vulnerability could
potentially exist in newer RA/AB PLC models

I Same PCCC stress tests on the ControlLogix 5570 did not
cause expected DoS fault

I Experiment yields insight into the differences in the way
MicroLogix and ControlLogix respond to the Protected Typed
Logical Read with Three Address Fields PCCC command

27 / 37



ControlLogix Experiment

I A PCCC reply always has a status (STS) byte, and for some
commands, an extended status (EXT STS) byte

I MicroLogix only returns the STS byte (0x10= ”Illegal
command or format”) whereas ControlLogix returns both STS
and EXT STS bytes– STS = 0xF0 (”Error code in the EXT
STS byte”) and EXT STS = 0x06 (”Address doesn’t point to
something usable”)[6]

I Functional difference indicates that it may be more valuable
to fingerprint PLCs using information at the application level

28 / 37



Future Work

I EtherNet/IP support library can be expanded so that is fully
compliant with specifications

I Testing TCP and IP layers may expose vulnerabilities in the
ENIP/IP implementation

I Explore EtherNet/IP implementations across related products,
i.e., products that conforms to the ODVA specification or
deemed interoperable with related models

I OpENer is a POSIX-compliant implementation of ENIP that
is partially supported by Rockwell Automation [4]

29 / 37



Questions

Francisco Tacliad - francisco.tacliad@gmail.com
Thuy D. Nguyen, Naval Postgraduate School, tdnguyen@nps.edu
Mark Gondree, Sonoma State University, gondree@sonoma.edu

30 / 37



References I

[1] Achilles Platform. Accessed: March 25, 2016. n.d. url:
https://www.wurldtech.com/product/achilles.

[2] Aegis. Accessed: March 25, 2016. n.d. url:
https://www.automatak.com/aegis/.

[3] Automatak. Accessed March 25, 2016. aegis-opensource.
url: https://github.com/ITI/ICS-Security-
Tools/tree/master/protocols.

[4] Rockwell Automation. Rockwell Automation Sponsors
Development of Open-Source Software Stack. Accessed
Sept. 8, 2017. 2009. url: http://phx.corporate-
ir.net/phoenix.zhtml?c=196186&p=irol-

newsArticle&ID=1356918.

31 / 37

https://www.wurldtech.com/product/achilles
https://www.automatak.com/aegis/
https://github.com/ITI/ICS-Security-Tools/tree/master/protocols
https://github.com/ITI/ICS-Security-Tools/tree/master/protocols
http://phx.corporate-ir.net/phoenix.zhtml?c=196186&p=irol-newsArticle&ID=1356918
http://phx.corporate-ir.net/phoenix.zhtml?c=196186&p=irol-newsArticle&ID=1356918
http://phx.corporate-ir.net/phoenix.zhtml?c=196186&p=irol-newsArticle&ID=1356918


References II

[5] BeSTORM software software security testing tool.
Accessed: March 25, 2016. n.d. url:
http://www.beyondsecurity.com/bestorm.html.

[6] Allen Bradley. DF1 Protocol and Command Set, Reference
Manual. 1770-65.16. Milwaukee, WI, 1996.

[7] Allen Bradley. Logix5000 Data Access Programming
Manual. 1756-PM020D-EN-P. Milwaukee, WI, 2016.

[8] Allen Bradley. MicroLogix 1100 Programmable Controller
Instruction Set Reference Manual. 1763-RM001B-EN-P.
Milwaukee, WI, 2011.

[9] Sergey Bratus, Axel Hansen, and Anna Shubina. LZfuzz: a
fast compression-based fuzzer for poorly documented
protocols. Tech. rep. TR-2008 634. Hanover, NH:
Darmouth College, Sept. 2008.

32 / 37

http://www.beyondsecurity.com/bestorm.html


References III

[10] Eric J Byres, Dan Hoffman, and Nate Kube. “On Shaky
Ground–A Study of Security Vulnerabilities in Control
Protocols”. In: (2006), pp. 782–788.

[11] Defensics. Accessed: March 25, 2016. n.d. url:
http://www.codenomicon.com/products/defensics/.

[12] Ganesh Devarajan. “Unraveling SCADA Protocols: Using
Sulley Fuzzer”. In: Las Vegas, NV, 2007.

[13] Matthew Franz. “ICCP Exposed: Assessing the Attack
Surface of the Utility Stack”. In: Proceedings of SCADA
Security Scientific Symposium. Miami, FL, 2007.

[14] Roland Koch. Accessed March 25, 2016. ProFuzz. url:
https://github.com/HSASec/ProFuzz.

33 / 37

http://www.codenomicon.com/products/defensics/
https://github.com/HSASec/ProFuzz


References IV

[15] Luis Mora. OPC Security White Paper. Byres Research.
Jan. 2007. url:
https://scadahacker.com/library/Documents/OPC_

Security/OPC%20Security%20-%20OPC%20Exposed.pdf.

[16] Peach Introduction. Accessed: March 25, 2016. Deja Vu
Security, n.d. url: http:
//community.peachfuzzer.com/Introduction.html.

[17] Aaron Portnoy, Pedram Amini, and Ryan Sears. Accessed
March 25, 2016. sulley. url:
https://github.com/OpenRCE/sulley.

34 / 37

https://scadahacker.com/library/Documents/OPC_Security/OPC%20Security%20-%20OPC%20Exposed.pdf
https://scadahacker.com/library/Documents/OPC_Security/OPC%20Security%20-%20OPC%20Exposed.pdf
http://community.peachfuzzer.com/Introduction.html
http://community.peachfuzzer.com/Introduction.html
https://github.com/OpenRCE/sulley


References V

[18] Xiong Qi et al. “OPC-MFuzzer: A Novel Multi-Layers
Vulnerability Detection Tool for OPC Protocol Based on
Fuzzing Technology”. In: International Journal of Computer
and Communication Engineering 3.4 (July 2014). url:
http:

//search.proquest.com/docview/1618797232?pq-

origsite=gscholar.

[19] Scapy. Accessed: Aug. 14, 2016. 2011. url:
http://www.secdev.org/projects/scapy.

[20] Rebecca Shapiro et al. “Identifying Vulnerabilities in SCADA
Systems via Fuzz-Testing”. In: International Conference on
Critical Infrastructure Protection. Heidelberg, Germany,
2011, pp. 57–72.

35 / 37

http://search.proquest.com/docview/1618797232?pq-origsite=gscholar
http://search.proquest.com/docview/1618797232?pq-origsite=gscholar
http://search.proquest.com/docview/1618797232?pq-origsite=gscholar
http://www.secdev.org/projects/scapy


References VI

[21] The CIP Networks Library Volume 1: Common Industrial
Protocol. 3.22. Open DeviceNet Vendor Association, Inc.
Ann Arbor, MI, Apr. 2017.

[22] The CIP Networks Library Volume 2: EtherNet/IP
Adaptation of CIP. 1.23. Open DeviceNet Vendor
Association, Inc. Ann Arbor, MI, Apr. 2017.

[23] A. Timorin. Scada deep inside: protocols and security
mechanisms. unpublished.

[24] Alexander Timorin. Accessed March 25, 2016. url:
https://github.com/atimorin/scada-tools.

[25] Artemios G Voyiatzis, Konstantinos Katsigiannis, and
Stavros Koubias. “A Modbus/TCP fuzzer for testing
internetworked industrial systems”. In: 2015 IEEE 20th
Conference on Emerging Technologies & Factory
Automation. Luxembourg City, Luxembourg, 2015, pp. 1–6.

36 / 37

https://github.com/atimorin/scada-tools


References VII

[26] Ting Wang et al. “Design and Implementation of Fuzzing
Technology for OPC Protocol”. In: 2013 Ninth International
Conference on Intelligent Information Hiding and Multimedia
Signal Processing. Beijing, China, 2013, pp. 424–428.

37 / 37


	Introduction
	Introduction
	EtherNet/IP Protocols
	EtherNet/IP Protocols

	Fuzzing Methodologies
	Fuzzing Methodologies

	ICS Protocol Fuzzers
	ICS Protocol Fuzzers

	Design and Implementation
	Implementation of Support Library
	Implementation of Fuzzer
	Fault Monitoring
	Test Environment
	Results and Analysis
	Results and Analysis
	Response Time Analysis
	Response Time Analysis
	Response Time Analysis
	Response Time Analysis
	Response Time Analysis
	Denial-of-Service Fault
	Denial-of-Service Fault
	ControlLogix Experiment
	ControlLogix Experiment
	Future Work
	Questions
	References

