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ABSTRACT
EtherNet/IP is a TCP/IP-based industrial protocol commonly used in
industrial control systems (ICS). TCP/IP connectivity to the outside
world has enabled ICS operators to implement more agile prac-
tices, but it also has exposed these cyber-physical systems to cyber
a�acks. Using a custom Scapy-based fuzzer to test for implementa-
tion �aws in the EtherNet/IP so�ware of commercial programmable
logic controllers (PLC), we uncover a previously unreported denial-
of-service (DoS) vulnerability in the Ethernet/IP implementation
of the Rockwell Automation/Allen-Bradley MicroLogix 1100 PLC
that, if exploited, can cause the PLC to fault. ICS-CERT recently
announces this vulnerability in the security advisory ICSA-17-138-
03. �is paper describes this vulnerability, the development of an
EtherNet/IP fuzzer, and an approach to remotely monitor for faults
generated when fuzzing.

CCS CONCEPTS
•Security and privacy →Denial-of-service attacks;

KEYWORDS
Industrial control system, fuzz testing, EtherNet/IP, MicroLogix
ACM Reference format:
Francisco Tacliad, �uy D. Nguyen, and Mark Gondree. 2017. DoS Ex-
ploitation of Allen-Bradley’s Legacy Protocol through Fuzz Testing. In
Proceedings of Annual Industrial Control System Security Workshop, Orlando,
Florida, USA, Dec. 2017 (ICSS’17), 8 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Industrial control systems are vital components to the operation
and functioning of Operational Technology (OT) systems used to
manage critical infrastructure services. �ere are sixteen critical
infrastructure sectors de�ned by the Department of Homeland
Security (DHS) and most, if not all, utilize some form of ICS to
manage and operate their assets [6]. OT systems are protected
by varying levels of boundary defense, but o�en have exploitable
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network interiors. To identify cyber threats against the control
network segment inside an OT system, vulnerabilities in the ICS
protocols must be analyzed.

To serve the need for greater e�ciency and automation, modern
industrial network protocols have evolved from serial-based �eld-
bus protocols to TCP/IP-based protocols that are transported over
standard Ethernet links. �e Common Industrial Protocol (CIP)
[26] and Ethernet/Industrial Protocol (EtherNet/IP) [27] are two
well-known Open DeviceNet Vendors Association (ODVA) TCP/IP-
based industrial protocols used by a large number of industrial
automation vendors. Rockwell Automation/Allen-Bradley (RA/AB)
PLCs (e.g., ControlLogix and MicroLogix) implement these proto-
cols. Herein, unless explicitly speci�ed, the term EtherNet/IP refers
to both of these related protocols, collectively.

Fuzz testing, or fuzzing, is a penetration testing technique to
verify the robustness of target so�ware in handling invalid, mal-
formed, or unexpected input data. Fuzzing the implementations of
control network protocols is an important step towards develop-
ing more secure industrial control systems. Voyiatzis et al. argue
that control networks are rich targets for this type of black-box
testing because those systems are likely to have been developed
years ago, the source code and speci�cation may not be available, a
variety of vendor-speci�c implementations may exist, and Internet
connectivity is increasingly integrated with such systems [36].

Li�le information has been made publicly available on the vul-
nerabilities of the EtherNet/IP so�ware used in commercial PLCs.
To examine the robustness of the EtherNet/IP implemenation of se-
lect RA/AB devices, we create a fuzz testing tool (ENIP Fuzz) using
Scapy, a Python module used for packet parsing and cra�ing [1].
Scapy’s �exibility to send, sni�, dissect and forge network packets
has made it a popular tool among penetration testers.

Using ENIP Fuzz, we discover a previously unreported vulnerabil-
ity in the EtherNet/IP implementation of the Rockwell Automation
MicroLogix 1100 PLC that, if exploited, can cause the MicroLogix
PLC to become unresponsive. �e ICS-CERT security advisory
ICSA-17-138-03 [3] identi�es several critical infrastructure sectors
that are potentially vulnerable to this network denial-of-service
a�ack, i.e., Critical Manufacturing, Food and Agriculture, Trans-
portation Systems, and Water and Wastewater Systems.

In summary, this paper describes the following contributions:

(1) A Scapy-based fuzzer for exploiting EtherNet/IP security vul-
nerabilities.

(2) A remote fault detection strategy employing a liveness check,
unexpected responses, and performance measurement to moni-
tor the remote device during testing.

(3) A discovery of a de�ciency in MicroLogix’s handling of the
Programmable Controller Communication Commands (PCCC)
protocol [14], which is transported inside CIP messages. PCCC
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is a vendor-speci�c CIP extension, used for communications
with legacy RA/AB PLCs. By sending a specially cra�ed PCCC
command, a remote, unauthenticated a�acker can trigger an
unrecoverable error condition, requiring the PLC to undergo a
hard reset.

(4) A preliminary exploration of potential cross-generational vul-
nerabilities in di�erent families of RA/AB PLCs.
In the remaining sections, we provide basic information on Eth-

erNet/IP protocols and review prior work in §2. We then describe
ENIP Fuzz and our remote monitoring approach in §3. A discussion
of the fault detection results, the MicroLogix vulnerability, and the
ControlLogix experimentation is in §4. We conclude in §5.

2 BACKGROUND AND RELATEDWORK
�is section provides an overview of the three protocols relevant
to this work and summarizes previous work in ICS fuzz testing.

2.1 EtherNet/IP Protocols

CIP. Being an object-oriented protocol, each node in a CIP network
is modeled as a set of objects [26]. An object is an abstract represen-
tation of a particular component within a product. A class is a set of
objects of the same kind of system component. An object instance
is the actual representation of a particular object. An instance of a
class or an object share the same a�ributes, but has its own unique
a�ribute values [26]. For example, the Identity object identi�es the
device, and its Status a�ribute (a�ribute ID = 0x05) describes the
current state of the entire device [26]. A CIP node can have multiple
object instances within a class of objects. A group of objects used
in a device is referred to as that device’s object model [26]. �e CIP
object library supports network communications, network services,
and automation functions used by industrial components such as
analog and digital input/output devices.
EtherNet/IP. �is protocol is an adaption of CIP to allow CIP
communications to be transported over standard Ethernet. �e
EtherNet/IP standard de�nes port 44818 as the designated port over
which EtherNet/IP devices accept TCP and UDP connections. Eth-
erNet/IP supports two primary types of communications: implicit
and explicit [27].

Implicit messaging enables a sending device (i.e., the producer)
to exchange scheduled, time-critical control data to one or more
receiving devices (i.e., the consumers) [27]. With implicit messag-
ing, a CIP connection must be established [27]. Communication
sessions related to a speci�c connection are assigned a unique con-
nection identi�er upon establishing a connection [27]. �e CIP
connection identi�er acts as a dedicated communication path al-
lowing multiple end-points to share data without the need to send
the data multiple times [27]. Implicit messaging uses UDP and can
be unicast or multicast [27].

Explicit messaging provides general request/reply communica-
tion between two devices and is used for non-real-time data. For
EtherNet/IP, explicit messaging uses TCP and does not require
establishing a CIP connection [27].
PCCC. �is protocol provides legacy support for older RA/AB
PLCs, e.g., PLC5 and SLC500 [17]. When used with EtherNet/IP,
the PCCC object (class code = 0x67) processes PCCC messages

encapsulated in CIP payloads. �is encapsulation is accomplished
through the use of the “Execute PCCC” CIP service (service code =
0x4B). Each PCCCmessage contains a command code and a function
code, which together specify the PCCC command to be executed
by the receiving device. For example, the command code 0x06
and the function code 0x00 indicate the echo command whereas
the command code 0x0F and the function code 0xA2 specify the
protected typed logical read with three address �elds command.

2.2 Fuzzing Methodologies
While there is no universally-accepted taxonomy of fuzzing ap-
proaches, most of the literature places fuzzers into one of two
categories: mutation-based and generation-based. Mutation-based
fuzzers apply transformations (mutations) on existing data samples
to create test cases [30]. Generation-based fuzzers create test cases
from behavior models of the system under test (SUT). Each method
has its own strengths and weaknesses.
Mutation-based Fuzzers. Mutation-based fuzzers modify valid
inputs by altering bytes to create fuzzed inputs [30]. Some muta-
tion fuzzers utilize a description of the input �elds, while other
mutation fuzzers do not require any knowledge of the format; in-
stead, they use heuristics to guess �eld structure and mutate each
�eld [30]. Most mutation fuzzers extract data from recorded ses-
sions for mutation, although some fuzzers intercept and mutate live
tra�c [30]. Mutation-based fuzzing is considered a form of brute
force testing in that the fuzzer starts with valid inputs and incre-
mentally transforms every bit within the input [33]. �is requires
li�le up-front research and implementing a naive mutation-based
is relatively straightforward. �e SUT may employ complex logic
infrequently invoked. Many fuzzing iterations may be required
to achieve su�cient code coverage, though this challenge can be
o�set with automation.
Generation-based Fuzzers. Generation-based fuzzers construct
test cases employing rules de�ning a grammar-based speci�cation
for inputs. �e simplest fuzzers of this type create input data of
random strings of bytes [30]. Some generation-based fuzzers must
be con�gured using an input description or data model to generate
test cases [33]. �e generation-based approach requires up-front
research to understand the speci�cation or source code of the target.
However, rather than using hard-coded test cases, a generation-
based fuzzer uses grammar-based rules to dynamically pinpoint
the portions of the �le or packet that represent fuzzable variables.

2.3 ICS Protocol Fuzzers
We survey relevant fuzzers and fuzzing frameworks, highlighting,
when applicable, those ICS protocols each supports (Table 1). We
classify the surveyed so�ware as either a custom fuzzer or a fuzzing
framework. Custom, or one-o�, fuzzers target a speci�c �le format
or network protocol. �ey can be used to stress test a wide range
of applications that support the target format or protocol.

Su�on [33] descibes fuzzing frameworks as homogenous devel-
opment environments that enable the use of reusable utilities to
maximize extensiblity. Sulley and Peach are examples of open-
source, generation-based fuzzing frameworks that support some
ICS protocols [30]. Sulley is a framework consisting of multiple
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Table 1: Summary of ICS Fuzzers

Name Type Protocol Availability
Aegis Fuzzer [10] custom DNP3, Modbus commercially licensed,

early version open-source
Beyond Security’s beSTORM [5] framework several, including DNP3 commercially licensed
blackPeer [19] framework several, including Modbus NA
Codenomicon’s Defensics [7] framework several, including CIP, EtherNet/IP, Modbus, OPC UA

Server, Pro�net, Scada GOOSE
commercially licensed

ICCP Fuzzer [22] custom ICCP NA
LZFuzz [18] framework several, including SNMP [30] NA
MTF [36] custom Modbus NA
OPC-MFuzzer [37] custom OPC, DCOM, RPC [29] NA
OPC Server Fuzzer [24] custom OPC Server NA
Peach [9] framework several, including Modbus, BACNet, DNP3, OPC [9, 37] open-source
ProFuzz [23] custom Pro�net open-source
scada-tools [34, 35] custom Pro�net open-source
Sulley [28] framework several, including Modbus, DNP3, TPKT, COPT [20] open-source
Wuldtech’s Achilles [4] custom several, including EtherNet/IP, Foundation Fieldbus, MMS,

Modbus, OPC UA, Pro�net, DNP3, MMS, SES-92
commercially licensed

extensible components, including an instrument to monitor the
health status of the target and detect, track, and categorize what
sequence of test cases triggers faults [33]. Sulley can also fuzz in
parallel, increasing performance [33].

While some commercial fuzzers report supporting EtherNetIP
in some fashion ([7], [4]), no other surveyed fuzzers support Eth-
erNet/IP at all. Smith and Francia [31] report on an EtherNet/IP
and CIP fuzzer, but the code is not available. �e Modbus/TCP
Fuzzer (MTF) and scada-tools are two custom Scapy-based fuzzers
for Modbus and Pro�net, respectively [34, 36]. At DEFCON 15,
Devarajan describes using the Sulley framework to fuzz Modbus,
DNP3 and ICCP [20]. Similarly, Peach is designed for �exiblity. It
provides custom fuzzing strategies and data modi�ers, as well as
special processes called Agents for fault detection [9].

3 DESIGN AND IMPLEMENTATION
In general, fuzzers operate under two basic assumptions: (i) faults
contained in a target application can be triggered through input
controlled by the user and (ii) the execution of a faulty portion of
an application will result in some behavioral manifestation (e.g.,
bricking the device or producing unexpected output) [12]. Most sys-
tems are designed to work with speci�c inputs but, ideally, should
be robust enough to gracefully handle malformed data. �erefore,
�aws found from fuzzing will correspond to a bug in the target (e.g.,
�le, network protocol, embedded device, and so�ware).

3.1 Implementation of Support Library
We implement ENIP Fuzz, a custom fuzzer for testing security vul-
nerabilities in the EtherNet/IP and CIP layers of an EtherNet/IP
implementation. ENIP Fuzz implements its own EtherNet/IP sup-
port library using Scapy, a Python module used for packet cra�ing
and manipulation [1]. Our library conforms to the EtherNet/IP
speci�cations [26, 27] and is based on an existing Wireshark dissec-
tor for EtherNet/IP [38], wri�en in C. ENIP Fuzz is not a one-to-one

translation of Wireshark’s source code. Internally, they are not the
same; instead, Wireshark is used for validating data �eld structure
rather than reuse of its parsing logic. In fact, we discover errors in
Wireshark’s implementation of the CIP Common Services, speci�-
cally the Multiple Service Packet [26, §A-4.10]. Additionally, Wire-
shark does not support proprietary vendor-speci�c EtherNet/IP
implementations, such as the PCCC protocol [25].

ENIP Fuzz is complete in its support of the EtherNet/IP speci�-
cation [27] and approximately one fourth of the CIP speci�cation
[26]. To characterize the EtherNet/IP tra�c space we collect several
samples of communication from our ICS lab environment, which
included the AB/RA MicroLogix 1100 and ControlLogix 5570 de-
vices. We implement all EtherNet/IP and CIP services captured in
these tra�c samples and add support for PCCC [25].

3.2 Implementation of Fuzzer
Based on observed tra�c in our lab, three types of EtherNet/IP
service requests were chosen as test cases to fuzz: EtherNet/IP
Register Session, CIP NOP, and Execute PCCC Service. For each
type, �elds are selected as primitives to fuzz based on the observed
volatility in the �eld’s value. Fields that remained static a�er having
been assigned a constant value (e.g., a �eld used for identifying
an established EtherNet/IP session) are not fuzzed. Additionally,
fuzzing is performed only at the layer in which the service request
is encapsulated.
EtherNet/IP Register Session Request. �e EtherNet/IP Reg-
ister Session request is used for establishing a TCP encapsulation
session between an originator and a target. As de�ned by the spec-
�ciation [27, §2-4.4], the originator shall open a TCP/IP connection
to the target on port 0xAF12; the originator shall then send an Eth-
erNet/IP Register Session request to the target. Upon receiving a
valid Register Session request, the target shall assign and reply with
a unique session identi�er called the Session Handle, an unsigned
32-bit integer value [27].
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To fuzz the EtherNet/IP Register Session request, we manipulate
the Protocol Version and Options Flags, �rst in isolation and then
simultaneously. Both �elds take the value of an unsigned 16-bit
integer. For each test case, ENIP Fuzz is programmed to fuzz these
�elds with a random integer from 0 to 65535. Per the EtherNet/IP
speci�cation [27, §2-4.4] and experimentation, with the exception
of Session Handle, these are the only non-constant �elds.
CIP NOP Request. �e CIP NOP (No Operation) request is a CIP
common service that causes the receiver to generate a No Operation
response [26, §A-4.17]. �e receiver does not execute any other
internal action; if the receiver does not support the CIP NOP, a
response with a status error is returned [26, §A-4.17]. �e CIP NOP
request is chosen because of its simplicity. �e CIP NOP request
has no speci�ed data �eld structure and is only embedded in an
EtherNet/IP Send RR Data Packet.

Without any associated data �eld, the Class and Instance �elds
within the Request Path are the only fuzzable variables for CIP NOP.
�ey are fuzzed individually and then at the same time. Class and
Instance are a type of CIP segment used for referencing a speci�c
CIP entity [26]. Segments are grouped together in order to de�ne a
relationship among di�erent objects. �e Request Path is a value
used to specify such a relationship.
Execute PCCC Service. PCCC is a vendor-speci�c application-
layer protocol used for communication between certain RA/AB
processors [25]. Unlike the EtherNet/IP Register Session and CIP
NOP, the Execute PCCC Service is not a common service. According
to its speci�cation, PCCC is used primarily to “ease communication
between legacy networks and the new CIP networks” [14, p. 7.17].
EtherNet/IP products are able to support PCCC through encap-
sulation within CIP. In our lab, we observe that the RSLogix 500
so�ware, used to program ladder logic for RA/AB PLCs, periodi-
cally sends Execute PCCC Service commands to the PLC. �e high
regularity with which RSLogix sends the Execute PCCC Service
command is the motivating factor in its selection for fuzzing.

�e Protected Typed Logical Read with �ree Address Fields
command is the speci�c Execute PCCC Service function chosen for
fuzzing. �is function is used to read data from a logical address [14,
p. 7.17]. To fuzz this function the following �elds are manipulated
in isolation and then in combination: Byte Size, File Number, File
Type, and Element Number.

3.3 Fault Monitoring
�ough fuzzers may di�er in their fuzzing techniques, fault moni-
toring is of particular importance. At its most basic level, a fuzzer
might detect that a fault was triggered if the target crashes or be-
comes bricked, i.e., application is rendered unusable or is unable to
accept a new connection [33]. More sophisticated fault detection
may be achieved with the help of a debugger. For example, the
Peach and Sulley fuzzing frameworks communicate directly with
a debugger a�ached to the target application [9, 33]. Su�on et al.
propose an alternative, where a debugger runs on the target plat-
form to monitor exceptions and correlate fuzzing behavior with
observed faults [33].

�ere are three ways the fuzzer remotely monitors for faults
generated when fuzzing: a liveness check, unexpected responses,
and performance degradation.

Many existing fuzzing approaches a�ach a debugger to the SUT
to determine when crashes occur. For example, Basnight uses an
available JTAG interface for debugging the RA/AB ControlLogix
L61 CPU [13]. Debuggingwith JTAG requires special pins called test
access ports which may not be available in all devices. Other studies
have leveraged built-in fault monitoring utilities. Dunlap describes
using a task monitor utility available in the ControlLogix L61 to
access timing data from ladder logic execution times for an anomaly-
based intrusion detection system [21]. A�aching a debugger or
performance monitor is not an option for our experiments, so we
adopt alternative, remote-fault monitoring methods.

Since explicit interaces for fault detection are not always avail-
able, people have used remote analysis to determine when crashes
have occured. Shapiro et al. describe using a liveness check to iden-
tify when an ICS device revives itself during a fuzzing session [30].
�eir study suggests that for protocols running over TCP, the oc-
currence of a TCP RST �ag is a su�cient metric for indicating that
a target device has crashed; however they concede that this method
may produce false positives. Similarly, Voyiatzis et al. argue that
direct access to the SUT is not needed, simply a network connection
to it [36]. �ey suggest that through network behavior—such as
socket timeout, reset, or close; failure in reopening a closed socket;
and failure in opening a new socket—are useful indications that the
SUT has crashed. ENIP Fuzz utilizes such indicators to judge if the
target has crashed.

ENIP Fuzz also �lters for unexpected responses. Voyiatzis et al.
record information during fuzzing the Modbus protocol to check if
responses are outside of the speci�cation [36]. Similarly, ENIP Fuzz
inspects response packet data for responses that do not conform to
the speci�cation.

In addition, we consider performance degradation as fault for
real-time systems that may be elicited during fuzz testing. To the
best of our knowledge, no other study has considered performance
as a type of fault for detection during fuzzing. �e NIST Guide to
Supervisory Control and Data (SCADA) and Industrial Control Sys-
tems Security highlights that ICSs are generally time critical; where
delay of information cannot be tolerated [32]. �us, malformed
packets impacting the timely delivery of responses may be consid-
ered a type of so� failure, causing the SUT to go outside normal
behavior. One of the contributions of our study is in exploring three
potential performance metrics during fuzzing (discussed further
in Section 4.3) to ascertain their reasonableness as candidates for
detecting these types of so� failures.

Generally, for monitoring performance when fuzzing, we record
a baseline of valid tra�c for each generator and compare this to
tra�c captured during fuzzing. �ese baselines serve as a control,
modeling how the device should behave under normal operation
(e.g., valid EtherNet/IP requests). Records captured during fuzzing
are compared to the baseline and analyzed for irregularities in
response times. Any anomalous behavior is correlated with fuzz
scenario, using timestamps and packet inspection.

3.4 Test Environment
Our test environment consists of four components: the SUT, the
fuzzer, background tra�c generators, and the monitor (Fig 1). �e
test equipment for the experiments consists of an Allen-Bradley
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MicroLogix 1100 PLC, a Windows 7 Virtual Machine (VM) with
RSLinx, a Kali 2.0 VM with the fuzzer, a Kali 2.0 VM with the Ping
utility, and a workstation with Mac OS X running Wireshark. �e
equipment are connected via Ethernet to a common hub. �e SUT
employed in this study is the MicroLogix 1100 PLC.�e MicroLogix
1100 is an EtherNet/IP I/O scanner device that supports explicit
messaging. Experimental tra�c sent to the SUT is generated by a
Kali 2.0 host running ENIP Fuzz. �e background tra�c generators
are two hosts: Kali 2.0 running Ping and Kali 2.0 running RSLinx.
�e Ping utility is used to send ICMP Echo requests at one second
intervals. RSLinx is so�ware for Allen-Bradley devices used to
browse and con�gure PLC devices. To generate requests, RSLinx
is set to “autobrowse” mode, causing it to send UDP broadcast
EtherNet/IP List Identity Response requests to the SUT (and, in fact
all devices connected to the network). �e monitor is Mac OS X
host running Wireshark to collect all tra�c for analysis.

Figure 1: Fuzzing test environment

During experimentation, a liveness check is performed using the
Ping utility to determine that the target is still responsive. For per-
formance degradation, we monitor the latency in responses to both
ICMP Echo requests and EtherNet/IP requests made by the RSLinx.
Irregularities in recorded response times may suggest increased
CPU utilization or memory exhaustion related to fuzz testing. �e
SUT is also monitored for unexpected responses, i.e., responses
outside the EtherNet/IP speci�cation or otherwise incorrect (e.g.,
responses that contain erroneous data).

4 RESULTS AND ANALYSIS
We use three metrics for analysis: the deltas between ICMP Echo
requests from Ping, List Identity requests from RSLinx, and the
response from the service request being fuzzed. �e SUT interacts
with the tra�c generators for about 5 minutes during a “warm-up
period,” a�er which the fuzzer sends either correctly formed packets
(during baseline) or malformed packets (during testing) for a period
of approximately 20 minutes. �e Wireshark packet capture of the
fuzzing session is then truncated into a 10 minute window, a�er
which each of the metrics is analyzed. Each delta is calculated by
taking the di�erence between the timestamp of the response and
the request.

We perform three baseline measurements and fourteen trials
(Table 2). Each baseline and trial is repeated twice making the total
number of tests twenty-eight.

Table 2: ICS Fuzzing Trials

Trial Name Field Fuzzed
enip-register-session-baseline NA
enip-register-session-fuzz-protocol-version Version
enip-register-session-fuzz-option-�ag Options
enip-register-session-fuzz-protocol-option Version,Options
cip-nop-baseline NA
cip-nop-fuzz-class Class
cip-nop-fuzz-instance Instance
cip-nop-fuzz-class-instance Class,Instance
pccc-exec-baseline NA
pccc-exec-fuzz-byte Byte Size
pccc-exec-fuzz-�le-no File Number
pccc-exec-fuzz-�le-type File Type
pccc-exec-fuzz-element Element No.
pccc-exec-fuzz-all File No., File Type,

Element No.

4.1 Response Time Analysis
Our results suggest that using the deltas in response times from
ICMP Echo requests and List Identity requests may not be meaning-
ful metrics for determiningwhether fuzzing has an observable e�ect
on the performance of the SUT. Using Tukey’s Honest Signi�cant
Di�erence (HSD) test there is no signi�cant di�erence in response
times when fuzzing compared to when sending non-malformed
tra�c. Fig 2 and Fig 3 illustrate Tukey’s HSD graphs for the fuzzing
metric with the EtherNet/IP Register Session and CIP NOP com-
mands, respectively. In this example, we see that all populations
appear to overlap, therefore the null hypothesis (that the samples
represent the same distribution, i.e., the latencies are una�ected)
cannot be rejected.

Figure 2: Tukey’s HSD for Register Session Tests

On the other hand, under Tukey’s HSD for tests against the Ex-
ecute PCCC Service command, we observe some sensitivity with
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Figure 3: Tukey’s HSD for CIP NOP Tests

these performance metrics (see Fig 4). Tukey’s HSD suggests per-
formance may be impacted during analysis, however the results
are inconsistent. For example, when comparing pccc-exec-fuzz-�le-
no-1 and pccc-exec-fuzz-�le-no-2 we expect the mean latencies to
overlap based on tests performed on EtherNet/IP Register Session
and CIP NOP test cases, but instead we observe a statistical di�er-
ence between these populations. We observe similar anomalous
results when comparing pccc-exec-fuzz-byte-1 with pccc-exec-fuzz-
byte-2. Since there is high variability in the tra�c contents across
fuzzing sessions, the fact that we may see variable behavior across
sessions is not unexpected; but more testing is warranted before it
is possible to claim fuzzed inputs were responsible for any apparent
performance degradation.

Figure 4: Tukey’s HSD Tests of Execute PCCC Service

4.2 Denial-of-Service Fault
When fuzzing the Execute PCCC Service, we discover a previously
unreported DoS vulnerability caused by accessing certain Data Files
with an invalid File Type. �is result is not represented in the deltas
discussed previously; we identify the types of packets that cause
the fault and bypass it to produce the results in Fig 4. By sending a
specially cra�ed Execute PCCC Service packet to the SUT, a Major
Error (0x08) is triggered and the device becomes unresponsive. To
clear the fault, the device must be power-cycled and reset using

the RSLogix Clear Major Fault utility. �e SUT used to test the
fault condition is a MicroLogix 1100 PLC (1763-L16BWA Series B,
FRN 14).

According to the MicroLogix 1100 reference manual, data �les
store status and data information associated with instructions used
in ladder subroutines [15, p. 40–41]. An existing CVE (CVE-2012-
4690) describes a DoS fault that can occur when a malformed CIP
packet is wri�en to the Status �le [2]. It is not clear if these two
faults are related. Allen-Bradley has issued �rmware releases for
the MicroLogix 1100 to mitigate that vulnerability; the anomaly
identi�ed in CVE-2012-4690 was corrected in FRN 13 according to
the release notes for FRN 14: “Status �le bits […] were writable
through communication messages which allowed the possibility to
force the controller to go into fault. �e solution included in this
�rmware revision allows users to CLEAR these bits […] but does
NOT allow them to SET using Communication Messages” [16, p.
5]. Moreover, the observed fault is generated by a read request, i.e.,
eliciting our fault does not involve any write requests. Fig 5 shows
the output of the MicroLogix 1100 Status File while the SUT is in
the Faulted state.

Figure 5: MicroLogix 1100 Status File

To exploit the vulnerability, the a�acker sends a single Execute
PCCC Service - Protected Typed Logical Read with �ree Address
Fields packet with a File Number of 0x02–0x08 and File Type 0x48
or 0x47. Any combination of File Number 0x02–0x08 and File Type
0x48 or 0x47 will trigger a Major Error (0x08). Figures 6 and 7
illustrate example packets that will cause the fault.

In addition, to reproduce the fault, it appears that the a�acker
must establish a session with the target with an EtherNet/IP Reg-
ister Session Request and then create a connection instance with
a Connection Manager Forward Open Request. �e DoS packet
needs not to immediately follow the Connection Manager Forward
Open Request to cause the fault.

4.3 ControlLogix Experiment
We speculate that the same PCCC vulnerability could potentially
exist in newer RA/AB PLC models because legacy code tends to
be le� in newer so�ware without being fully tested. However,
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Figure 6: A DoS Packet, highlighting �elds encapsulated at
the PCCC layer.

Figure 7: Packet Structure of a DoS Packet, highlighting
�elds encapsulated at the PCCC layer.

running the same PCCC stress tests on the ControlLogix 5570 did
not cause the expected DoS fault condition. Nevertheless, this
experiment yields insight into the di�erences in thewayMicroLogix
and ControlLogix respond to the Protected Typed Logical Read with
�ree Address Fields PCCC command.

A PCCC reply always has a status (STS) byte, and for some
commands, an extended status (EXT STS) byte. Fig 8 shows the
packet format of the Protected Typed Logical Read with �ree
Address Fields [14].

Figure 8: Packet Format of Protected Typed Logical Read
with �ree Address Fields Command [14]

We observe that MicroLogix only returns the STS byte (0x10 =
”Illegal command or format”) whereas ControlLogix returns both
STS and EXT STS bytes—STS = 0xF0 (”Error code in the EXT STS
byte”) and EXT STS = 0x06 (”Address doesn’t point to something us-
able”) [14]. �is functional di�erence indicates that it may be more
valuable to �ngerprint PLCs using information at the application-
level protocol headers, rather than more generic techniques using
just port numbers.

5 CONCLUSION AND FUTUREWORK
In this paper, we describe ENIP Fuzz, a fuzzing tool developed to un-
cover vulnerabilities in the EtherNet/IP so�ware used in commercial
PLCs. ENIP Fuzz can dissect Ethernet/IP packets with encapsulated
CIP and PCCC messages. We use two di�erent RA/AB PLCs, i.e.,
MicroLogix 1100 and ControlLogix 5570 as the SUT for our fuzzer.

While stress testing the MicroLogix 1100 PLC’s handling of
PCCC messages, we discover a �aw in its implementation of the
Execute PCCC Service request. Successful exploitation of this vul-
nerability by sending a single, specially-cra�ed PCCC packet could
cause the PLC to enter a faulted state that must be power-cycled and
reset using a special recovery tool. �is improper input validation
vulnerability has been con�rmed by the vendor and documented
in the ICS-CERT security advisory ICSA-17-138-03. As reported by
the advisory, the a�ack a�ects all existing models of the MicroLogix
1100 family. Testing beyond this family, we repeat the same fuzz
testing on the ControlLogix 5570 and observe no failure.

Another contribution is the use of response times as a metric for
remote fault detection. For the data we collect, statistical hypothesis
testing via Tukey’s HSD suggests we observed no signi�cant di�er-
ence between the response times during normal activity and during
fuzz testing; however, we encourage the community to consider
metrics like these and consider performance degradation as a fault
condition for real-time systems. Developing more nuanced remote
fault-detection metrics for fuzz testing (rather than the current
crash/no-crash metrics) seems well-intentioned but non-trivial.

5.1 Future Work
As an extension to this work, the EtherNet/IP support library can
be expanded so that it is fully compliant with the EtherNet/IP
speci�cations. Be�er handling of proprietary protocols such as
PCCC should also be added; currently, these protocols are not
supported by Wireshark’s dissectors, and thus must be validated
through alternative means, such as manual inspection of tra�c (or,
in our case, custom tools like ENIP Fuzz). We plan to integrate ENIP
Fuzz into the Metasploit framework, either as a new module or an
extension to an existing module.

We had initially considered those protocol layers targeted by
existing fuzzing tools as out-of-scope of our work; however, testing
the TCP and IP layers of the network stack may expose vulnera-
bilities in the ENIP/IP implementation, as the speci�cation makes
certain assumptions about the underlying TCP/IP mechanisms.

We consider the investigation of related �aws across products—
i.e., derived from speci�cation ambiguities or from the irregularities
of handling reserved or rare legacy protocols—to be potentially very
interesting. Such shared �aws have been observed in many other
products, but no comprehensive study exists for families of ICS
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devices. �us, it may be fruitful to further explore EtherNet/IP im-
plementations across related products, i.e., products that conforms
to the ODVA speci�cation or deemed interoperable with related
models. In particular, OpENer is a POSIX-compliant implementa-
tion of an EtherNet/IP protocol stack [8]. �e development of this
stack is partially supported by Rockwell Automation [11]. Given
its portability, OpENer would be quite amenable to testing using
existing frameworks and black-box fuzzers.
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