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ABSTRACT
We introduce and analyze a general framework for authen-
tically binding data to a location while providing strong
assurances against cloud storage providers that (either ac-
cidentally or maliciously) attempt to re-locate cloud data.
We then evaluate a preliminary solution in this framework
that combines constraint-based host geolocation with proofs
of data possession, called constraint-based data geolocation
(CBDG). We evaluate CBDG using a combination of ex-
periments with PlanetLab and real cloud storage services,
demonstrating that we can bind fetched data to the loca-
tion originally hosting it with high precision. We geolocate
data hosted on the majority of our PlanetLab targets to re-
gions no larger than 118,000 km2, and we geolocate data
hosted on Amazon S3 to an area no larger than 12,000 km2,
su�ciently small to identify the state or service region.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls;
E.5 [Files]: Backup/Recovery; H.3.2 [Information Stor-

age and Retrieval]: Information Storage; K.6.5 [Manage-

ment of Computing and Information Systems]: Secu-
rity and Protection

General Terms
Security, Legal Aspects, Measurement, Experimentation

Keywords
Cloud storage, storage security, data availability, provable
data possession, proof of data geolocation

1. INTRODUCTION
Private organizations and governmental agencies with lim-

ited storage and IT resources are now outsourcing storage to
cloud-based service providers, in an attempt to leverage the
manifold benefits associated with cloud services: resource
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pooling, rapid elasticity, metered service, etc. There are
legitimate concerns, however, about the implications of us-
ing cloud storage services for critical assets. This is espe-
cially true in light of recent high-visibility failures, including
a massive service outage at Amazon, resulting in the per-
manent loss of customer data [1, 7]. An Amazon outage in
2008 was due directly to one of its Amazon S3 geographic
region centers becoming unreachable for several hours [19].

Increasingly common are cloud service options and service
level agreements (SLA) that specify (among other things)
the geographic region of a service, at the granularity of a
city, state, time zone or political boundary. Geographic re-
gion options are provided to help customers achieve a variety
of objectives, including performance, continuity and regula-
tory compliance. For example, a non-U.S. company may
want its U.S. customer-serving website located within the
continental United States, to improve load time and respon-
siveness for its target demographic. For contingency plan-
ning, a customer may want her data replicated across numer-
ous, geographically distinct locations, for permanence in the
face of regional outages or natural disasters. Risk manage-
ment strategies may be based, in part, on the properties of a
specific data center. For example, Amazon GovCloud o↵ers
services in a physically separate Amazon service center in
Oregon, with specific physical security measures and cleared
sta↵ [2, 22]. Further, there are a variety of legal restrictions
and protections that may compel a customer to choose to
locate data in a specific geographic region. For example,
many privacy laws—such as those in Nova Scotia, British
Columbia, Australia and soon the EU [16]—require citizens’
personal data remain stored within a political border (or,
often, that of another nation with comparable protections).

Reliance on a contractual obligation, however, may fail to
detect misbehavior (either malicious or accidental) on the
part of the service provider. For example, a careless ser-
vice provider may move client data wholesale, in violation
of an SLA, to an overseas data center, to leverage cheaper
IT costs. A provider may consolidate data centers or de-
duplicate client data, undermining those users who are in-
tentionally duplicating data across multiple non-collocated
centers for contingency planning. There is concern that the
economic incentives for storage providers only align with
the goal of preventing reputation-spoiling failures, but do
not align with other service characteristics, for which audits,
instead, may be appropriate [39]. Indeed, we see these senti-
ments echoed by potential customers in a variety of sectors.
For example, in the United States, the Whitehouse’s Federal
Cloud Computing Strategy recommends vendors be held ac-



countable for service failures, using active SLA compliance
monitoring [27]. Likewise, the US Federal Risk and Au-
thorization Management Program (FedRAMP), which es-
tablishes a set of government-wide standards for the use of
commercial cloud services, mandates the continuous, active
monitoring of services [11].

Verifying that a cloud storage service provider is meet-
ing geographic obligations is a challenging problem, and one
that has emerged as a critical issue. Benson et al. [6] and Pe-
terson et al. [35] each, independently, propose using proofs
of data possession and host geolocation to bind cloud data to
a specific geographic location. Extending this work, we ex-
tract a more generic framework for actively monitoring the
geographic location of data in the cloud, using latency-based
geolocation techniques to implement data geolocation. We
contribute the following:

• We relax the adversarial models and assumptions of
previous work, and introduce a generalization of the
adversarial model of Peterson et al. We show that,
against a type of strong, covert adversary, the proto-
col’s soundness is limited relative to the block length,
the file size, the bandwidth available to the service
provider, and the time period across which an audit is
performed.

• We present constraint-based data geolocation (CBDG),
a data geolocation solution that builds on constraint-
based techniques for host geolocation. Our method-
ology is generic enough to use any distance-latency
model, including topology-aware models and those that
simulate the overhead of specific storage services. As a
preliminary approach, we first explore the e↵ectiveness
of a simple linear model.

• We validate CBDG using a proof-of-concept simula-
tion, geolocating targets using large messages on the
PlanetLab infrastructure. We use these models to suc-
cessfully geolocate data stored by Amazon Web Ser-
vices, both with and without observational landmarks
collocated with the storage service.

2. SCOPE
Broadly, the problem we consider is how to actively mon-

itor if a storage service provider is meeting its geographic
obligations. As with previous work [6, 35], we note that
tracking all copies of data in the cloud is not within the
scope of our solution, but instead focus on verifying the lo-
cation of known data copies. The premise of data geolo-
cation is that a provider may have some (economic) incen-
tive for re-locating data in breach of contract, but assuring
that all copies exist within some geographic region is out-
side the scope of our work. In particular, data geolocation
may be able to detect (in the context of privacy law) non-
compliance, i.e. that a host serving citizens’ data appears
to reside outside the borders of its owners’ country in viola-
tion of a service provider’s geographic obligation; it cannot,
however, detect compliance, i.e. it cannot “discover” copies
of the same data that are held, secretly, at some unknown,
remote location. We discuss the relationship between our
problem and various outstanding legal questions, similar to
these, in Section 8.3.

3. BACKGROUND
To implement data geolocation, we combine two previ-

ously orthogonal ideas: host geolocation and cryptographic
proofs of data possession. Here, we survey previous work in
both areas, and highlight those features we leverage in our
work.

3.1 Host Geolocation
Discovering the physical location of a host on the Inter-

net is a natural problem for a variety of applications, has
been the focus of recent research, and several commercial
products now exist providing these services. In a security
context, host geolocation has largely been employed to limit
online content and services, such as streaming video or on-
line gambling, to specific geographical regions.

Geolocation of hosts on the Internet is currently achieved
through a variety of evidence-gathering practices, includ-
ing mining data from whois databases and DNS records,
using Internet topology data and through the manual in-
spection of Internet artifacts (e.g. confirming a webpage is
written in Chinese). These methods provide a “best guess”
based on a small constellation of heuristic evidence, gen-
erously assumed to be non-malicious. The only unspoofa-
ble, technical method for bounding location on the Inter-
net, however, is active measurement—i.e. delay probes from
known landmarks—in conjunction with topological informa-
tion, e.g. from path probing and BGP routing views [20, 26,
29, 33].

To build a topology-based solution, Katz-Bassett et al. use
traceroute and latency measurements along a routing path
to infer location. Obtaining latencies between intermediate
router hops further constrains the possible location of a tar-
get. This approach, and subsequent optimizations [44], un-
derlie current state-of-the-art for Internet host geolocation
as used in commercial services. The accuracy of these com-
mercial databases, however, is questionable [23, 36]. A study
by Siwpersad et al. [40] finds that, in querying more than
1.2M IP addresses, approximately 50% of the results from
two popular commercial geolocation databases di↵er by at
least 100 km.

Multiple measurements mitigate variable sources of ob-
served delay, e.g. congestion, while transmission and pro-
cessing delay are assumed to be negligible, relative to prop-
agation time. By using multiple landmarks with known po-
sitions, delay measurements allow for multilateration of the
target’s feasible region. The correlation between delay and
distance, however, is not always strong due to Internet peer-
ing points, topology, and layer-2 tra�c engineering [40]. In
particular, Internet delays are known to violate the triangle
inequality. This is especially true considering the power of
an adversarial node against these types of measurement [18].

In this work, we use constraint-based geolocation (CBG)
as described by Gueye et al. [20]. CBG utilizes delay-based
constraints, measured using a set of landmarks at known lo-
cations. Real-world network delays rarely correspond to a
simple relationship between great-circle distance and speed
of light (a physics-based baseline), although such baselines
produce conservative, upper-bound models. The CBG best-
line model attempts to be a more realistic relationship be-
tween observed network delay and geographic distance.

In the bestline model, all landmarks measure the delay
to all other landmarks. Then, each landmark i builds a
linear model from its set of latency-distance observations



Figure 1: Example scatter plot of distance vs. de-

lay from one node (planetlab1.cs.colorado.edu) to 49

others (see Figure 2), with its CBG bestline and two
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{(ti,j , di,j)}. This model is characterized by a single line,
the CBG bestline (for an example, see Figure 1), defined
as the line with non-negative intercept bi and slope mij =
(tij � bi)/dij closest to that of the baseline slope m,
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Using this model, a landmark can estimate the distance to
an unknown target by measuring network delay. Each land-
mark admits a circular constraint on a target’s location,
where the circle is centered at the landmark and its radius
is equal to the landmark’s distance estimation. Define the
intersection of these circular constraints to be the target’s
feasible region, a spherical polygon on the surface of the
Earth enclosing the target’s probable geographical location.

3.2 Provable Data Possession
Provable data possession (PDP) is a class of protocols al-

lowing a client to e�ciently audit remote data stores without
retrieving the data from the remote server and without re-
quiring the server access the entire file. Recent research has
proposed schemes that prove the storage and integrity of re-
mote data [3, 4, 5, 14, 15, 17, 37, 43] and, further, prove
the recoverability of the data from incomplete copies [8, 12,
13, 32, 38], the latter termed a proof of retrievability (POR)
scheme. Related, proof of ownership schemes [21] allow a
server to challenge a client to prove its ownership of a file
before allowing storage or access, typically in the context of
client-side de-duplication.

All modern PDP schemes follow a similar four-step pro-
tocol: (1) the data owner pre-processes the file to create a
small, unforgeable tag. Clients may now store their data
(and in some cases, the tag) remotely, allowing the client
to delete its local copy; (2) At a later time, the client (or
an auditor, on the client’s behalf) issues a challenge to the
storage server to ascertain the state of the file; (3) The stor-
age server responds to the challenge with a proof, which may
require the provider to compute some function of the stored

file, and; (4) Using the proof and the tag, the client verifies
if the proof is correct; if so, the proof implies the file is stored
at the remote server, intact.

Combining the concepts of PDP with Internet geolocation
must be done thoughtfully, providing a new and interesting
setting for both problems. Näıvely composing latency-based
geolocation with provable data possession, i.e. applying each
technique serially and independently, provides no assurance.
Doing so establishes only two, disconnected facts: first, an
unmodified copy of the data exists somewhere and, second,
the responding server exists within some feasible region. We
attain no strong binding between the location and the data.
In particular, the geolocated server may be acting as a proxy,
relaying the PDP challenges to a server at some alternative
location.

4. SECURITY MODEL
In their 2010 paper, Gill et al. [18] explore the power of

an adversarial host to artificially influence its location as in-
ferred by delay- and topology-based geolocation techniques.
They find an adversary can manipulate the perceived lo-
cation of a target by altering the delay observed by each
landmark; however, the adversary may only do so by adding
delay. Assuming that the attacker does not control the en-
vironment during model building, this e↵ectively limits the
adversary to causing distance overestimation from observed
latencies. Since the constrained region size grows in propor-
tion to the amount of delay added by an attacker, Gill et
al. observe that using additive delay to relocate a target by
3000 km will result in a median feasible region with 107 km2

area, i.e. will inflate the feasible region to roughly the size of
Europe. These limitations work in our favor. Given that the
goal of our work is to place data within some boundary, the
ability to grow the feasible region to include points far from
the true location serves no useful purpose to our adversary.
The work of Gill et al. indicates that even a sophisticated
geolocation adversary, i.e. one who has knowledge and con-
trol over the network topology, has no significant advantage
in undermining the goals of data geolocation. Alternatively,
Gill et al. demonstrate that relatively small relocations are
di�cult to perceive: they demonstrate an attack—where an
adversary may move less than 1,000 km without detection—
that is successful 74% of the time. Thus, as expected, data
geolocation has practical limits when the target must be
placed within some small, bounded area or when the target
exists near the boundary of a geographic obligation.

Assumptions

For latency-based data geolocation, we make the following
assumptions: (1) all data are held, jointly, by some set of tar-
get data centers whose physical distance from one another is
remote enough to be distinguishable (with a high confidence)
by latency-based geolocation; (2) the cloud provider does
not have a high-bandwidth out-of-band channel between its
centers1; (3) the auditor controls a set of semi-trusted, ge-
ographically distributed landmarks; and (4) the adversary
does not control the entire network environment, i.e. the
Internet. Assumptions (1-3) are explicit, while (4) is im-

1This assumption—that remote sites are not connected by
a private network, of significantly better quality than the
Internet—is necessary for delay-based IP geolocation (and
our work); we acknowledge, however, that providers renting
dark fiber may undermine such an assumption.



plicit, in previous data and host geolocation work [6, 18].
For constraint-based geolocation, we add that (5) during an
audit, misbehavior (when detected) has a high probability
of being detected by all landmarks. In our model, as long
as misbehavior has a high probability of being detected by
some auditor, then assumption (5) can be satisfied by select-
ing parameters such that every auditor has a high detection
probability. In contrast to previous work: we do not require
landmarks to be collocated with the targets; we do not need
to assume the locations of all data centers are known in ad-
vance; we do not need to restrict data movement to other,
known targets; we do not need to build a model of the target
by interacting with it; we do not require observing the target
during a period in which its behavior is presumed honest or
otherwise “normal;” and we do not need to use landmarks
(collocated or otherwise) running on infrastructure owned
by the target provider. Instead, we build a model of the
environment using semi-trusted, geographically dispersed,
remote landmarks to geolocate data that may have been re-
located to arbitrary, new, and previously unknown locations.

Like Benson et al. [6] and our previous work [35] we con-
sider an adversary who may deviate from the protocol dur-
ing an audit. In particular, Benson et al. allow the adver-
sary to fetch blocks from a remote location (in violation of
the protocol), when a challenge cannot be satisfied using
blocks local to the target. (It is not possible, however, for
the storage provider to fool an audit by quickly responding
with arbitrary data; per-block authentication protect data
authenticity.)

Practical Adversaries

Like Benson et al., we consider economically rational adver-
saries, under the belief that even untrustworthy providers
will avoid transmitting or storing data needlessly, i.e. purely
for the sake of misbehavior. In Section 7, we describe a
stronger form of adversary that is able to misbehave with-
out detection if its bandwidth is large (relative to that of
the landmark). It is unlikely, however, that this adversary’s
misbehavior is economically advantageous. In particular,
the target may move portions of an archive to geographi-
cally remote locations but, during an audit, it must relocate
the data back to the target. For an economically rational
adversary, this limited misbehavior can be made punitively
expensive.

The most conservative approach to auditing using latency-
based constraints is to consider the union of all constraints,
rather than the intersection, i.e. if even one landmark be-
lieves a block is being proxied from a remote location, then
the feasible region should expand to include that area. Our
assumption that misbehavior, when it occurs, is likely to be
detected by all landmarks, allows us to consider the inter-
section of constraints generated by each landmark’s audit.
With no additional assumptions, each landmark need only
consider the maximum latency observed to produce a con-
straint. Each landmark might assume that if the majority
of blocks appear to be local, then its likely all blocks are
local; then, it need only consider the median latency to de-
rive a constraint. A stronger landmark assumption is that,
if any block appears to be local then all blocks are likely to
be local; thus, it need only consider the minimum latency
observed. For an economically rational adversary, it may
not be advantageous to store fractions of a file across di-
verse locations. Thus, these become reasonable landmark

assumptions during constraint generation. More generally,
a landmark could generate a constraint corresponding to
some ↵ confidence interval, such that all landmarks believe,
with ↵ confidence, the derived feasible region contains the
target. Alternatively, rather than a strict intersection, one
might derive the feasible region that the majority of land-
marks believe, with ↵ confidence, contains the target. Gill
et al. propose the constraint radius itself might be an indi-
cator of confidence, and that a threshold-based criteria may
be used to accept or reject constraints when generating the
feasible region [18].

5. CBDG
We propose constraint-based data geolocation (CBDG), a

general protocol that binds latency-based geolocation tech-
niques with a probabilistic proof of data possession. We
combine these techniques to develop a protocol with the as-
surances of each, allowing us to place data geographically
within a region while proving them to be authentic. In par-
ticular, leveraging CBG allows us to detect when target data
changes location, arbitrarily. Further, when target data is
replicated in multiple places, using enough geographically
dispersed observational landmarks has the potential to lo-
cate the target at these di↵erent positions (or fail to locate
the target at any single geographic position).

General Framework

Our techniques are not strongly bound to any particular
distance-latency estimate model. Theoretically, pure delay-
based models have the advantage that they will always be
an overestimation of distance based on the additive delays
incurred from both deterministic and stochastic network de-
lays. They are susceptible only to attacks that misplace tar-
gets at further distances. Other models that perform bet-
ter in practice—such as latency models incorporating route
and path data—appear susceptible to underestimation in
the face of an adversary who controls a portion of the net-
work (as a large cloud provider might). In our work, we
consider the CBG bestline model due to its simplicity, for
ease of comparison with previous CBG research, and as it is
foundational to more sophisticated geolocation models [18,
26, 44]. The bestline model is intended to be an improve-
ment on a pure speed-of-light model, providing the most
conservative linear model resembling the baseline while un-
derestimating all observed data.

Our techniques are not strongly bound to any particular
proof of possession scheme, either. Initially, we have selected
a simple MAC-based PDP scheme [25, 32] in which a file F
is broken into blocks {mi} and tagged:

Ti,mi = MACk(nameF ||i||mi).

In this scheme, the blocks {mi} and tags {Ti,mi} are stored
on the remote server. To challenge the server, the client
chooses c random indices and requests the corresponding
block/tag pairs. To verify, the client recomputes each tag
and compares it with the response; the audit’s soundness is
a function of c.

Using a MAC-based proof scheme has the advantage of
requiring no server-side computation and little client-side
storage: for each challenge, the server merely retrieves the
response from storage; to verify the proof, the client stores
only O(1) state, i.e. the cryptographic material k. As no
cloud storage service provides the ability to perform arbi-



trary computations, i.e. to generate complex proofs, using a
MAC-based scheme can be immediately implemented given
existing cloud infrastructure. The simplicity of a MAC-
based PDP scheme, however, comes at a relatively high com-
munication cost. Using a block size of b bytes, at least c⇥ b
bytes must be transferred (at some cost to the client). Some
alternative PDP schemes o↵er O(1) network complexity, but
require performing complex server-side cryptographic com-
putations [3, 38]. We comment on the potential complica-
tions of using alternative proofs in Section 8.

Protocol Stages

These independent technologies are brought together to cre-
ate our CBDG protocol:

1. Model Building: The landmarks interact, each build-
ing a latency-distance estimation model.

2. Pre-Process and Store: The data owner splits the
file F into blocks, tags each block and stores the block-
tag tuple at the target storage service.

3. Pre-Audit: The data owner randomly selects c unique
challenges and divides them among the landmarks.

4. Audit: Each landmark challenges the target. During
challenge i, the landmark records the delay ti associ-
ated with the response (mi, Ti,mi). Using its latency-
distance model, the landmark estimates the distance
di associated with delay ti. Landmark ` uses its set of
estimates {di}` to generate a circular constraint of ra-
dius r` centered at `. Each landmark returns the data
{(mi, Ti,mi)} and constraint r` to the data owner.

5. Verification: The data owner verifies the proofs
{(mi, Ti,mi)} received across all landmarks. If all ap-
pear valid, the data owner accepts the proof.

6. Geolocation: If the proof is accepted, the intersec-
tion of all constraints {r`} defines the data’s feasible
region.

The landmark’s constraint r` may be generated from its ob-
servations {di}` in one of various ways, depending on the
adversarial model and the desired feasible region accuracy
and precision. We discuss some possible choices related to
economically rational adversaries in Section 4.

The model building stage is intended to lower-bound the
full round-trip time of a challenge and response through
the environment. We denote the time to request and re-
ceive a single data block as the data geolocation round-trip
time (DG-RTT). Let DG-RTT`,k be the set of DG-RTT ob-
servations made by landmark ` when contacting landmark
k. Landmark ` builds a delay-distance model using the
min(DG-RTT`,k) for each k as its data. Assuming the adver-
sary does not control the entire environment during model
building, this provides each landmark with data representing
the expected minimal latencies between one another.

Protocol correctness requires: (a) the verifier accepts all
valid provers and (b) the feasible region contains any provers
with ↵ confidence. Protocol soundness requires: (a) a cheat-
ing prover has only negligible advantage in causing the ver-
ifier to accept and (b) a prover fetching its data remotely
can appear to be storing the data locally, with only limited
success. Under the belief that the adversary is economically

Figure 2: PlanetLab nodes used in experimentation.

rational, that c is chosen so that all landmarks detect misbe-
havior with a high probability, and that the bestline model
underestimates future observations: the landmark can gen-
erate the constraint r` using the minimum (or median) of its
di estimates, assuming the location of one (or most) blocks
can place the location of the entire file with ↵ confidence.
We discuss the impact on soundness when weakening these
assumptions in Section 7.

We next describe our experiments attempting to validate
and assess CBDG. In our analysis, we distinguish between
the feasible region’s precision and accuracy, as metrics for
our protocol’s utility. In one sense, if the area encloses the
target, then that region is accurate. Gueye et al. introduce
a di↵erent, and heuristic, accuracy metric: the distance of
the target from the centroid of the feasible region. Likewise,
precision may be related to the area of the feasible region.

6. EXPERIMENTAL RESULTS
To gauge the e↵ectiveness of the proposed techniques, we

evaluate them in simulation (on PlanetLab) and in real-
world environments (using Amazon S3). We are motivated
to discover the simplest, e↵ective data geolocation tech-
niques and our CBDG experimentation follows this moti-
vation. For example, we do not attempt to build a high-
fidelity, topology-aware latency-distance model that reflects
the provider’s overheads: first, that model would likely only
be valid in reference to a very weak and specific adversary
and, second, the decision to create such a model should be
motivated by first exploring much simpler ones. We explore
the bestline model, as it is the simplest, non-trivial, con-
servative delay-based model. We describe the details of our
evaluation, next.

Fifty PlanetLab nodes were chosen by hand, based on
their geographic diversity and availability (see Figure 2).
We choose landmarks in a single country, as we believed this
to be a reflection of how CBDG might be deployed: while
overseas landmarks may reduce the target’s feasible region,
particularly for hosts near a border, transferring data in-
ternationally during an audit may, in practice, leave it ex-
posed to foreign jurisdictions and subject to divergent (and
perhaps conflicting) rules governing protection [31]. While
our experimental results are concentrated in the continental
United States, we believe our techniques are generalizable
to any region where constraint-based geolocation has been
demonstrated to be feasible (e.g. Western Europe) [20].

On PlanetLab, we utilize a simple TCP challenge-response



Figure 3: The computed feasible region (grey) for

the target data, based our PlanetLab simulation of

a CBDG audit, using 32K blocks. The region has

area 245,898 km

2
and its centroid is 253 km from

the target (⇥).

protocol between landmarks. By using TCP in our mea-
surements, the delay-distance models begin to reflect the
protocol overhead associated with interacting with a real
cloud storage service provider. As such, our bestline models
start to characterize the service behavior of a cloud provider
rather than characterize delay artifacts from low-level proto-
col implementations, such as fragmentation or the maximum
transmission unit (artifacts considered by more complicated
host geolocation techniques). We do not attempt to model
overheads associated with the S3 service or the service in-
frastructure, e.g. delays from IO latency or load balancing.

In each experiment, nodes serve pseudorandom data gen-
erated by the urandom device. This limits any IO delay that
might be incurred by reading on-disk data from the set of
PlanetLab nodes. These heterogeneous nodes are known to
have diverse performance characteristics, whose IO behav-
iors may not be representative of a real storage provider’s
IO delays. We acknowledge this simulation may not be ap-
propriate for those providers whose service can become IO
bound or otherwise comes with large delays; consider, for
example, the seek times associated with random access us-
ing tape storage. We believe, however, that imposing a QoS
requirement on the provider may be acceptable in many sce-
narios, and is reasonable to consider as an initial approach.

Our PlanetLab experiments consider data stored in blocks
of size 2n bytes, where n = 0, . . . , 15, (1 to 32K bytes). In
our analysis, we often compare the largest of these (4K, 8K,
16K, 32K) to 64 bytes to compare with previous CBG re-
search. Each pairwise DG-RTT interaction is sampled ten
times, choosing nodes in random order, to build the set
DG-RTT`,k. Due to intermittent PlanetLab node failures,
not all landmarks participated in all measurements or every
experiment. In each experiment, we select one distinguished
node to be a target, excluding it from the set of landmarks
(i.e. during model building), in round-robin fashion.

6.1 Simulated Data Geolocation
We investigate the accuracy and precision of target fea-

sible regions in our PlanetLab simulation. For an example
feasible region from these experiments, see Figure 3. For

Figure 4: The optimal feasible regions for our se-

lected PlanetLab targets. Note, some regions are so

small they are occluded by the target markers.

each experiment, we consider the feasible region generated
when participating landmarks act ideally, generating con-
straints for the target that perfectly reflect its true distance
from the landmark. The resulting intersection is the tar-
get’s optimal feasible region. Due to the geographic inter-
relationship among landmarks some optimal feasible regions
are themselves quite large (see Figure 4). This demonstrates
that even in the best case, feasible regions are largely a func-
tion of landmark placement. We use this optimal behavior
as the primary point of comparison for our experiments.

Across all experiments, we see geolocation precision and
accuracy that is suboptimal, but relatively similar across
block sizes (see Figure 5). In general, accuracy and precision
when geolocating with larger block sizes (up to 32K) com-
pare well with that of using CBG-length responses (64 byte
blocks). Over 90% of the regions generated during audits
on blocks of 32K or smaller have centroids at most 626 km
away from their target; over 50% of these regions have cen-
troids no more than 166 km away (see Figure 5(a)). This
accuracy is consistent with that of the CBG results of Gu-
eye et al., which claimed an average distance of 78-182 km.
The geolocation precision for larger block sizes are similarly
favorable. For 32K blocks, 90% of regions are no more than
1,960,510 km2 in area; 50% are no more than 171,819 km2

in area (see Figure 5(b)).

6.2 Geolocating Amazon S3
To gauge the usefulness of our techniques in a real-world

cloud storage setting, we use our PlanetLab landmarks to
geolocate data stored in Amazon’s Simple Storage Service
(S3) US West-Northern California data center, assumed to
be at an unknown location. After interacting with the other
landmarks to build a latency-distance model, each Planet-
Lab landmark fetches a 1GB file in 32K blocks, measuring
the DG-RTT of each block request. An HMAC-SHA256 of
each block is stored as S3 metadata and returned with each
block request. The time to verify the MAC is not considered
in the DG-RTT. To ensure our S3 geolocation experiments
do not exclusively reflect the utility of collocated landmarks,



(a) CDF of distance from centroid (b) CDF of feasible region area

Figure 5: Cumulative distribution functions (CDFs) for feasible region distance and area for 50 PlanetLab

nodes over various block sizes.

(a) Optimal without nearby nodes:
5,114 km2 (5,114 km2).

(b) With nearby nodes: 11,175 km2

(243,791 km2).
(c) Without nearby nodes:
381,607 km2 (995,967 km2).

Figure 6: Feasible regions for Amazon’s S3 Northern California data center using minimum (dark grey) and

median (light grey) DG-RTT and optimal measurements. For each, area of the minimum- (median-) derived

region is indicated.

we remove all Northern California PlanetLab landmarks2

and evaluate, separately, the e↵ects of nearby landmarks.
When geolocating S3 data with nearby nodes, we see very

high precision at only a small cost in accuracy, i.e. underes-
timation (see Figure 6(b)). Results compare well with the
optimal feasible region (Figure 6(a)). Comparing to the U.S.
CBG results of Gueye et al. , this S3 feasible region area is
smaller than the majority (approximately 65%) of those ex-
perimental results [20]. Since Gueye et al. found European
targets generated, on average, smaller feasible regions, this
suggests that CBDG may perform equally well in that set-
ting, if it follows the U.S. data set trend.

Unsurprisingly, nearby landmarks contribute significantly
in restraining the feasible regions for CBDG. In particu-
lar, we see an order of magnitude improvement by including
nearby landmarks. We remark that nearby landmarks are
substantially di↵erent from collocated landmarks, in terms
of our model assumptions. Collocated nodes run on the ser-
vice provider’s infrastructure, co-resident with the storage
service. Its unclear what assumptions are implicit, when
landmarks themselves are under the control of the service
provider.

2Excluding nearby landmarks, the nearest landmark (plan-
etlab1.cs.ucla.edu) is just over 500 km from the target.

7. BEYOND RATIONAL ADVERSARIES
In CBDG, we consider an economically rational adversary,

based on the belief that the primary motivation for misbe-
havior is economic. For these, the cost of misbehavior can
be made punitive through regular audit, and certain limited
forms of attack are unlikely prima facie. We note that this
type of adversary is di↵erent from other rational adversaries
considered in cryptography. In particular, covert adversaries
may misbehave arbitrarily, as long as the probability for de-
tecting misbehavior is negligible. Peterson et al. hypothesize
a type of covert attack where the adversary may pre-fetch
remote blocks early in the protocol, in anticipation of a fu-
ture challenge. We expand on this model, as it is potentially
applicable to weakening the assumptions of our setting.

We model the protocol as a c-round interactive proof among
the target and the landmarks where, each round, some land-
mark challenges the target. Let r be the number of remote
blocks, i.e. those held at some location that is geographically
distinct from the target’s location. Let time ti be the time
elapsed from the start of the protocol to the end of round i.
Thus, the DG-RTT for challenge i is �ti = ti � ti�1. Let �
be the number of blocks that can be moved from remote to
local storage, per unit of time. Without loss of generality, we
assume this rate of transfer cannot be improved using data
compression: either we inflate � to reflect the speed-up as-



Figure 7: Probability of detecting that no more than

1% of a file is remote before an audit (r = 1% of

n), versus number of challenge rounds (c), for vari-

ous bandwidths (�); we consider a 1TB file in 4KB

blocks, where each challenge round is 50ms.

Figure 8: Probability of detecting server misbehav-

ior (PX) as a function of the number of blocks (n)
and the number of challenge rounds (c), for r = 1%
of n; we consider � as a blocks-per-round rate equiv-

alent to the 100Mbit/s bandwidth from Figure 7.

sociated with compressed blocks, or we prevent compression
by, say, encrypting all blocks.

LetX be a discrete random variable representing the num-
ber of challenged blocks not held local to the target; it is for
these blocks that the target will either (i) provide a coun-
terfeit proof that (with a high probability) will be rejected
as invalid, or (ii) fetch the data from some geographically
remote storage, causing some measurable delay �ti during
the round. We compute PX = P{X � 1}, the probability
that at least one of the challenged blocks matches a block
that is exclusively held at a remote location.

PX = P{X � 1} = 1� P{X = 0}

= 1� n� r

n
⇥ n� (r � �t1)� 1

n� 1
⇥ · · ·

= 1�
c�1Y

i=0

n� �(r � �ti)� i

n� i

where �(x) =

(
x for x > 0

0 otherwise

In this model, the time period prior to challenge i may be
used to move at most �ti of the r remote blocks to local
storage. Unlike a traditional provable data possession ad-
versary, this model allows the target to“undelete” the blocks
that have been locally deleted, at some cost. Letting � = 0
gives us the soundness of traditional PDP [3]. For � > 0,
the protocol loses the property where querying produces ar-
bitrary soundness amplification. In particular, at the point
in the protocol where �ti > r, all further queries provide no
increase to soundness.

Consider the scenario in which, for any round i, we have
ti = 1, i.e. every takes the same“unit of time,” during which
� blocks can be moved from remote to local storage. This is
a scenario where blocks fetched locally from the target yield
latencies that are identical, or similar. In this scenario, we
have

PX = 1�
c�1Y

i=0

p(i) where p(i) =
n� �(r � i�)� i

n� i
.

For i  r/� its the case that p(i � 1)  p(i), and for i >
r/�, we have p(i) = 1. Thus, letting c0 = min(c, 1+ br/�c),

the probability of detecting misbehavior becomes bound by

1� p(0)c0  PX  1� p(c0 � 1)c0 .

This behavior can be seen in Figure 7, where the proto-
col’s soundness reaches its maximum at some round c0 and
then becomes constant. We use our bounded formulae to
show PX as a function of n and c in Figure 8. The probabil-
ity of undetected misbehavior, essentially, is characterized
as an interaction between the scale of misbehavior, the rela-
tive bandwidth available to auditors and providers, and the
duration of the audit.

We note that soundness for misbehavior detection de-
grades as rapidly as the adversary becomes compliant with
the geolocation agreement. Thus, auditing may be seen
as enforcing correct behavior, rather than detecting slight
misbehavior. Our model may be further generalized to al-
low parallel challenges from landmarks in each round, thus
slowing the degradation of soundness across rounds to pro-
vide stronger assurance of detection. We do not, however,
explore the parallel challenge strategy here. First, such a
strategy requires heavyweight assumptions (strict synchro-
nization between landmarks during the protocol). Second,
we are interested in worst-case soundness, so we consider the
model that most greatly advantages the adversary.

8. DISCUSSION & FUTURE WORK

8.1 CBG Enhancements
Our CBDG framework is relatively general, and may be

adapted to incorporate new constraint-based geolocation tech-
niques. Thus, research into CBG improvements and new
delay-distance estimation techniques may immediately ben-
efit the problem of data geolocation. We highlight several
avenues for constraint-based geolocation research, based on
our experiences with CBDG.

In our PlanetLab-based evaluation, we choose a rather
arbitrary, convenient set of landmarks in the continental
United States. It became clear, however, that landmark
selection is an enormous factor a↵ecting the precision of
constraint-based geolocation. The reasons for this are many:
node responsiveness, quality of network connection, physi-
cal location relative to adjacent nodes, etc. Even perfectly



predicting landmarks that are geographically distant from
the target will generate huge feasible regions: a single East
Coast landmark auditing a West Coast target should pro-
duce a feasible region encompassing most of North America
and parts of Greenland.

We found, in practice, that some landmarks were much
more valuable than others. Let a landmark’s influence be
defined as the percentage by which the feasible region’s area
is reduced when the landmark’s constraint is included in
the total set of constraints. For those landmarks participat-
ing in an experiment, let the optimal feasible region be the
region constrained if all participating landmarks provided
ideal distance estimates. In this ideal simulation, we find
some landmarks—due only to their participation and ge-
ographic location—are sometimes very influential. Some,
alone, constrain the region by more than 80% (see Fig-
ure 9(a)). On average, as might be expected, no single
landmark appears strongly influencing when all landmarks
behave ideally. In comparison, we see numerous strongly in-
fluencing landmarks in our real experiments, including land-
marks that (when they influence at all) are strongly influ-
encing on average (see Figure 9(b)). Not only are the con-
straints from individual landmarks strongly influencing, we
find the bestline models themselves are strongly influenced
by single landmarks during model building.

We feel that landmark placement for geolocation warrants
independent study, with particular attention to both cover-
age (how to place landmarks to geolocate arbitrary targets
within some boundary, with high precision) and robustness
(how to place landmarks so geolocation is precise, despite
some of the landmarks failing or under-performing). Re-
lated“placement”and visibility problems, e.g. the art gallery
problem, do not seem to directly apply to our setting.

We feel that constraint-based geolocation might also ben-
efit from improved distance-latency estimate models. The
bestline method, in particular, largely ignores a wealth of la-
tency data, and becomes entirely defined by those small set
of data points able to bound a line that, by definition, resem-
bles the speed-of-light baseline model. Alternative models
might build and utilize sets of linear models, each of which
is appropriate for distance predictions on di↵erent ranges of
latencies: for ranges on which the model has very little data,
it might use a very conservative linear estimate; for ranges
on which the model has many samples, it might contribute
a more aggressive constraint estimate.

8.2 Alternative Proofs of Possession
One drawback of CBDG is the relatively high network

overhead required to perform an audit, especially in compar-
ison with recent proof of possession schemes capable of O(1)
network communication [3, 38]. In our scheme, the high
network complexity is strategic, to relax the computational
burden on the target: the server performs only computations
related to fetching data blocks. Of course, many web service
companies providing cloud storage also provide computation
services. For example, Amazon Web Services o↵ers both the
Simple Storage Service (S3) and the Elastic Compute Cloud
(EC2). Thus, we might develop a collocated PDP service,
leveraging more complex data possession proofs in CBDG.

It may be possible to augment latency-based geolocation
models with fine-grained measurements of server-based com-
putation delay, to isolate and identify those components
of latency associated with cloud storage infrastructure and

those induced by server-side cryptographic computations.
Such a modeling strategy would necessarily need to focus on
tight lower-bounds, since permitting variable latencies from
the target or lengthening the audit window will open oppor-
tunities for misbehavior from very strong adversaries. This
type of latency decomposition has been explored by the stor-
age and network communities, in similar contexts. For ex-
ample, delay-based techniques have been recently employed
to determine if data has been duplicated within a remote
data center [9]. We believe such fine-grained decomposition
of delays may allow CBDG protocols to utilize more complex
proofs of possession schemes—such as those compressing
their responses using homomorphic signatures, those with
multiple simultaneous challenges, etc. For example, PDP
audits that measure above a certain (pre-computed) thresh-
old of delay may suggest the target is fetching data from a
remote location.

It may also be possible to develop proofs of possession
leveraging new assumptions. For example, proofs might con-
structively leverage un-clonable, tamperproof devices oper-
ating on-site at the storage service provider, binding compu-
tation, rather than data, to a location. Consider a trusted,
un-clonable physical device with a GPS receiver at the re-
mote storage server: clients may challenge the server to per-
form operations on their data using this device, providing an
authentic proof of location, albeit under a new and di↵erent
security model (e.g. civilian GPS signals may be spoofed or
delayed).

8.3 Data Geolocation in a Legal Context
We previously proposed the concept of data sovereignty,

with some initial ideas on how it can be attained using data
geolocation [35, 24]. In a legal context, the traditional no-
tion of sovereignty is often defined by two rights: a positive
right, which allows a legitimate authority exclusive claim
to an object, and a negative right, which states that no
other authority may lay claim to that object. Legal tests
of sovereignty may be applied naturally to tangible objects,
such as property or chattel. Applying these historic notions
of sovereignty to data stored in the cloud, however, fail both
legally and technically, calling into question the appropri-
ateness of the term in the context of this and similar work.

While laws that establish exclusive, positive ownership
rights—founded in intellectual property law, data protec-
tion law and confidentially law—grant data owners rights
similar to that of physical property, we are unable to en-
joy traditional notions of sovereignty due to ambiguities in
cloud data’s jurisdiction, making an owner unable to ex-
clude another party’s interest. Consider the US PATRIOT
Act, which has been recently used to justify the seizure of
data, anywhere in the world, if the data center is owned and
operated by a US-based company, irrespective of the data’s
owner [28]. Further, due to an aging Electronic Commu-
nications Privacy Act, data residing in the cloud are cur-
rently treated jurisdictionally di↵erent than data on pri-
vately owned devices. Interestingly, only when the owner
of data is a government do historic notions of sovereignty
begin to make sense.

Similar limitations arise when using technology to assert
positive and negative rights on data stored remotely. While
our data geolocation protocol makes a small step towards
establishing positive rights (perhaps, through some limited
theory of jurisdiction), we know of no technology able to



(a) Influence of landmark on optimal feasible
regions.

(b) Influence of landmark on measured feasible
region.

Figure 9: For each of our PlanetLab landmarks, we plot how much it influenced the actual measured and

theoretically optimal feasible regions in our experiments over 4K blocks (Section 6.1). For each, we show the

landmark’s mean influence and the mean of its non-zero influence (mean*).

track and control the flow of all copies of data in an open
system, such as an Internet-based cloud. Indeed, imposing
such a technology may be in conflict with the economic ben-
efits of existing cloud models. Cloud providers optimize by
leveraging dynamic resource allocation across nodes, moving
data and computation to where it is cheapest.

As described in the Introduction, the inertia for organiza-
tions to move to cloud-based storage in increasing, but many
cloud computing strategies are complicated by a lack of a in-
ternationally recognized understanding of data jurisdiction.
If these issues are not solved, both legally and technically,
cloud storage service providers may be relegated to o↵ering
domestic-only services, limiting appeal and increasing costs.

We posit one way forward may be an intergovernmental
statement of recognition pertaining to cloud services, clarify-
ing which entities have an exclusive jurisdiction over data in
transit, storage, and processing. It will be necessary to avoid
multiple jurisdictions. To do so, may require readjustments
to law enforcement and anti-terrorism e↵orts (to define min-
imum requirements for surveillance and seizure of cloud in-
frastructure), building mutual trust through uniform due
process. It is unrealistic to assume that any common under-
standing of data jurisdiction will be established irrespective
of data’s physical location. We believe our contributions,
and data geolocation in general, provide an important first
step in developing methods for establishing the data-location
binding, which may be leveraged by future policy. For fur-
ther reading on the subject, the authors recommend Irion’s
recent paper on the subject [24].

9. RELATED WORK
Bowers et al. propose an approach to verify a cloud stor-

age service provider is replicating data across multiple drives
through fine-grained measurements of delay [9]. Their tech-
nique, called Remote Assessment of Fault Tolerance (RAFT),
yields a tool intended to break the common abstraction of
the cloud, through an interactive challenge and response pro-
tocol, much like CBDG. The idea of having a simple cloud
abstraction when we want it, and removing it when we don’t,
is a powerful one.

The use of semi-trusted landmarks has been at the foun-
dation of many of geolocation solutions [33, 20, 44, 29].

In wireless networks, hidden landmarks (or, “hidden, mo-
bile base stations”) have been used in a slightly di↵erent
model of geolocation that is robust against a small number
of colluding adversaries [42]. Recent results in position-based
cryptography present some interesting positive results in the
“bounded storage model” that are secure, even when consid-
ering a very strong type of adversary—capable of breaking
nearly all previous geolocation strategies—that is able to
clone itself at multiple, specific, hidden locations [10]. In-
terestingly, this adversary does not necessarily undermine
CBDG’s goal, which is merely to determine that the ad-
versary is inside some bounding area (not to determine its
specific position in this area); therefore, we believe our guar-
antees may be achieved in a weaker model.

Tools to actively monitor real cloud performance or SLA
compliance—such as CloudCmp [30], SLAm [41] or any of
various commercial monitoring services—do not yet o↵er
support for checking compliance with respect to data dura-
bility or location clauses of an SLA. Most tools do monitor
certain QoS metrics potentially relevant to inferring geolo-
cation and data presence, such as up-time and end-to-end
response times. Thus, extending support to monitor data
geolocation is quite natural. Established commercial SLA
monitoring services provide natural partners for outsourcing
data audits or for acting as semi-trusted landmarks capable
of participating in data geolocation protocols.

10. CONCLUSION
We have proposed and investigated a method for binding

data in the cloud to a location, admitting strong assurance to
both data integrity and location. Our initial approach using
constraint-based geolocation with proofs of data possession
appears promising. We attempt to weaken assumptions in
previous data geolocation work—i.e. those related to col-
locating landmarks at the target or running observational
nodes on adversarial infrastructure—as we believe this to
provide stronger assurances, possibly at the cost of preci-
sion. We are particularly interested in protocols with higher
accuracy and assurances against stronger adversaries. To-
ward this, combining CBDG with the replica management
techniques of Benson et al. or more advanced geolocation
techniques seems promising. In particular, one might lever-



age collocated landmarks to build a model of service over-
head to more accurately simulate landmark-target interac-
tions during model building; our preliminary results using
CBDG using TCP-based models are favorable.

11. ACKNOWLEDGEMENTS
The authors would like to thank Andreas Terzis for his

assistance with PlanetLab access and Rob Beverly for early
discussion about host and data geolocation. Partial support
for this work was provided by the National Science Founda-
tion under award No. 1143573.

12. REFERENCES
[1] Amazon Web Services. Summary of the Amazon EC2

and Amazon RDS service disruption in the US east
region. Available at
http://aws.amazon.com/message/65648/.

[2] Amazon Web Services. Overview of security processes,
May 2011. Available at
http://aws.amazon.com/security.

[3] G. Ateniese, R. Burns, R. Curtmola, J. H. amd
Lea Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proceedings of the
ACM Conference on Computer and Communications
Security, 2007.

[4] G. Ateniese, S. Kamara, and J. Katz. Proofs of
storage from homomorphic identification protocols. In
Proceedings of ASIACRYPT, 2009.

[5] G. Ateniese, R. D. Pietro, L. V. Mancini, and
G. Tsudik. Scalable and e�cient provable data
possession. In Proceedings of the International
Conference on Security and Privacy in
Communication Networks, 2008.

[6] K. Benson, R. Dowsley, and H. Shacham. Do you
know where your cloud files are? In Proceedings of the
ACM Cloud Computing Security Workshop, 2011.

[7] H. Blodget. Amazon’s cloud crash disaster
permanently destroyed many customers’ data.
Business Insider, April 4 2011. http://www.
businessinsider.com/amazon-lost-data-2011-4.

[8] K. D. Bowers, A. Juels, and A. Oprea. Proofs of
retrievability: Theory and implementation. In
Proceedings of the ACM Workshop on Cloud
Computing Security, 2009.

[9] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and
R. L. Rivest. How to tell if your cloud files are
vulnerable to drive crashes. In Proceedings of the ACM
Conference on Computer and Communications
Security, 2011.

[10] N. Chandran, V. Goyal, and R. M. R. Ostrovsky.
Position based cryptography. In Proceedings of the
International Cryptology Conference, 2009.

[11] CIO Council. Proposed security assessment &
authorization for US government cloud computing,
November 2010.

[12] R. Curtmola, O. Khan, and R. Burns. Robust remtoe
data checking. In Proceedings of the ACM
International Workshop on Storage Security and
Survivability, 2008.

[13] R. Curtmola, O. Khan, R. Burns, and G. Ateniese.
MR-PDP: Multiple-replica provable data possession.

In Proceedings of the International Conference on
Distributed Computing Systems, 2008.

[14] Y. Deswarte, J.-J. Quisquater, and A. Säıdane.
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