
Multi-Party Indirect Indexing and Applications

Matthew Franklin Mark Gondree Payman Mohassel

Department of Computer Science
University of California, Davis

December 4, 2007
Asiacrypt 2007

Kuching, Sarawak, Malaysia

Outline

1 Summary

2 Motivation
Using RAM machines in secure MPC
Example: Private Sampling
Example: Private Bipartite Stable Matching

3 Our Protocol: mLUT

4 Our Subprotocol: g-mOT

5 Summary of Results
Example: Private Sampling
Example: Private Stable Matching

Outline

1 Summary

2 Motivation
Using RAM machines in secure MPC
Example: Private Sampling
Example: Private Bipartite Stable Matching

3 Our Protocol: mLUT

4 Our Subprotocol: g-mOT

5 Summary of Results
Example: Private Sampling
Example: Private Stable Matching

Summary

Our main result:

an efficient multiparty generalization of Naor-Nissim circuits with
look-up-tables (LUT)

a useful (and efficient) generalization of oblivious transfer

Outline

1 Summary

2 Motivation
Using RAM machines in secure MPC
Example: Private Sampling
Example: Private Bipartite Stable Matching

3 Our Protocol: mLUT

4 Our Subprotocol: g-mOT

5 Summary of Results
Example: Private Sampling
Example: Private Stable Matching

Motivation: using RAM machines in secure MPC

Poly-log reduction of RAM machines to
circuits

not known

Thus, RAM machines may be much more
efficient than circuits

Poly-log reduction of RAM machines to
circuits with look-up tables (LUT)

known

for any RAM machine M running in time
T (n) using space S(n), ∃ series of circuits
with LUT {Cn}n∈N computing fM , where Cn

is size T (n)polylog(S(n))

〈A, i〉

A[i]

Circuit

with LUT

Motivation: using RAM machines in secure MPC

Poly-log reduction of RAM machines to
circuits

not known

Thus, RAM machines may be much more
efficient than circuits

Poly-log reduction of RAM machines to
circuits with look-up tables (LUT)

known

for any RAM machine M running in time
T (n) using space S(n), ∃ series of circuits
with LUT {Cn}n∈N computing fM , where Cn

is size T (n)polylog(S(n))

〈A, i〉

A[i]

Circuit

with LUT

Motivation: using RAM machines in secure MPC

Poly-log reduction of RAM machines to
circuits

not known

Thus, RAM machines may be much more
efficient than circuits

Poly-log reduction of RAM machines to
circuits with look-up tables (LUT)

known

for any RAM machine M running in time
T (n) using space S(n), ∃ series of circuits
with LUT {Cn}n∈N computing fM , where Cn

is size T (n)polylog(S(n))

〈A, i〉

A[i]

Circuit

with LUT

Motivation: using RAM machines in secure MPC

Poly-log reduction of RAM machines to
circuits

not known

Thus, RAM machines may be much more
efficient than circuits

Poly-log reduction of RAM machines to
circuits with look-up tables (LUT)

known

for any RAM machine M running in time
T (n) using space S(n), ∃ series of circuits
with LUT {Cn}n∈N computing fM , where Cn

is size T (n)polylog(S(n))

〈A, i〉

A[i]

Circuit
with LUT

Motivation: using RAM machines in secure MPC

Poly-log reduction of RAM machines to
circuits

not known

Thus, RAM machines may be much more
efficient than circuits

Poly-log reduction of RAM machines to
circuits with look-up tables (LUT)

known

for any RAM machine M running in time
T (n) using space S(n), ∃ series of circuits
with LUT {Cn}n∈N computing fM , where Cn

is size T (n)polylog(S(n))

〈A, i〉

A[i]

Circuit
with LUT

Motivation: using RAM machines in secure MPC

Given a private circuit w/ LUT construction

simulate a RAM machine

what more:

we get a simulation of an oblivious RAM machine

a RAM machine where reads are oblivious
a RAM machine where writes are oblivious (via [NN01])

Here, oblivious means

time and location is independent of the computation’s
inputs/randomness

Motivation: using RAM machines in secure MPC

Given a private circuit w/ LUT construction

simulate a RAM machine
what more:

we get a simulation of an oblivious RAM machine

a RAM machine where reads are oblivious

a RAM machine where writes are oblivious (via [NN01])

Here, oblivious means

time and location is independent of the computation’s
inputs/randomness

Motivation: using RAM machines in secure MPC

Given a private circuit w/ LUT construction

simulate a RAM machine
what more:

we get a simulation of an oblivious RAM machine

a RAM machine where reads are oblivious

a RAM machine where writes are oblivious (via [NN01])

Here, oblivious means

time and location is independent of the computation’s
inputs/randomness

Motivation: using RAM machines in secure MPC

Given a private circuit w/ LUT construction

simulate a RAM machine
what more:

we get a simulation of an oblivious RAM machine

a RAM machine where reads are oblivious
a RAM machine where writes are oblivious (via [NN01])

Here, oblivious means

time and location is independent of the computation’s
inputs/randomness

Motivation: using RAM machines in secure MPC

Given a private circuit w/ LUT construction

simulate a RAM machine
what more: we get a simulation of an oblivious RAM machine

a RAM machine where reads are oblivious
a RAM machine where writes are oblivious (via [NN01])

Here, oblivious means

time and location is independent of the computation’s
inputs/randomness

Motivation: Applications for RAM Machines

Private computation via simulation of a RAM machine appropriate for

any problem where a large array of data must be used and

only some of the data is ever accessed, or
the access pattern leaks information

Motivation: Applications for RAM Machines

Private computation via simulation of a RAM machine appropriate for

any problem where a large array of data must be used and

only some of the data is ever accessed, or
the access pattern leaks information

Example: Private Sampling [IMSW07]

Input

an m-ary function f

m inputs of length n,

x i
j = j-th element of x i

Output

f (x1
r , . . . , xm

r), some secret, random r ∈ [n]

x1 . . . xm

x1
r x2

r xm
rf ()

used in:

private approximation (e.g. of the sum, of the norm)
private data-mining

Example: Private Sampling [IMSW07]

Input

an m-ary function f

m inputs of length n,

x i
j = j-th element of x i

Output

f (x1
r , . . . , xm

r), some secret, random r ∈ [n]

x1 . . . xm

x1
r x2

r xm
rf ()

used in:

private approximation (e.g. of the sum, of the norm)
private data-mining

Example: Private Sampling [IMSW07]

Input

an m-ary function f

m inputs of length n,

x i
j = j-th element of x i

Output

f (x1
r , . . . , xm

r), some secret, random r ∈ [n]

x1 . . . xm

x1
r x2

r xm
r

f ()

used in:

private approximation (e.g. of the sum, of the norm)
private data-mining

Example: Private Sampling [IMSW07]

Input

an m-ary function f

m inputs of length n,

x i
j = j-th element of x i

Output

f (x1
r , . . . , xm

r), some secret, random r ∈ [n]

x1 . . . xm

x1
r x2

r xm
rf ()

used in:

private approximation (e.g. of the sum, of the norm)
private data-mining

Example: Private Sampling [IMSW07]

Input

an m-ary function f

m inputs of length n,

x i
j = j-th element of x i

Output

f (x1
r , . . . , xm

r), some secret, random r ∈ [n]

x1 . . . xm

x1
r x2

r xm
rf ()

used in:

private approximation (e.g. of the sum, of the norm)
private data-mining

Example: Private Bipartite Stable Matching [Gol06]

Input

two sets (men and women) of size n

a set of rankings

x i
j = k if xi gives yj rank k

Output

a stable bipartite matching

x1 y1

x2 y2

x3 y3

♥?

stability: no unmatched individuals rank one another higher than
their “spouse”

used in:

matching residents to hospitals (US, Canada, Scotland)
placement of students at universities (Norway, Scotland)
professional services (e.g. National Matching Services, Inc)

Example: Private Bipartite Stable Matching [Gol06]

Input

two sets (men and women) of size n

a set of rankings

x i
j = k if xi gives yj rank k

Output

a stable bipartite matching

x1 y1

x2 y2

x3 y3

♥?

stability: no unmatched individuals rank one another higher than
their “spouse”

used in:

matching residents to hospitals (US, Canada, Scotland)
placement of students at universities (Norway, Scotland)
professional services (e.g. National Matching Services, Inc)

Example: Private Bipartite Stable Matching [Gol06]

Input

two sets (men and women) of size n

a set of rankings

x i
j = k if xi gives yj rank k

Output

a stable bipartite matching

x1 y1

x2 y2

x3 y3

♥?

stability: no unmatched individuals rank one another higher than
their “spouse”

used in:

matching residents to hospitals (US, Canada, Scotland)
placement of students at universities (Norway, Scotland)
professional services (e.g. National Matching Services, Inc)

Example: Private Bipartite Stable Matching [Gol06]

Input

two sets (men and women) of size n

a set of rankings

x i
j = k if xi gives yj rank k

Output

a stable bipartite matching

x1 y1

x2 y2

x3 y3

♥?

stability: no unmatched individuals rank one another higher than
their “spouse”

used in:

matching residents to hospitals (US, Canada, Scotland)
placement of students at universities (Norway, Scotland)
professional services (e.g. National Matching Services, Inc)

Outline

1 Summary

2 Motivation
Using RAM machines in secure MPC
Example: Private Sampling
Example: Private Bipartite Stable Matching

3 Our Protocol: mLUT

4 Our Subprotocol: g-mOT

5 Summary of Results
Example: Private Sampling
Example: Private Stable Matching

Introduction: Private mLUT

Input

Database ∆ = (δ0, . . . , δn−1)

Party i holds [∆]i , a share of ∆

Party i holds [σ]i , a share of secret index σ

Output

Party i learns [δσ]i , a share of ∆[σ] = δσ

mLUT([∆]1, [σ]1; [∆]2, [σ]2; . . . ; [∆]m, [σ]m) → ([δσ]1; [δσ]2; . . . ; [δσ]m)

Definition (Private mLUT)

mLUT is t-private if no coalition of up to t parties can learn any
information about σ or any of the elements in ∆.

Our Protocol: mLUT

Input

Database ∆ = (δ0, . . . , δn−1)

Party i holds [∆]i , a share of ∆, where ⊕[∆]i = ∆

Party i holds [σ]i , a share of secret index σ

Output

Party i learns [δσ]i , a share of ∆[σ] = δσ

Protocol

Let [∆]i = ∆i

For i = 1 to m:

Parties run
g-mOT(∆i , [σ]i ; [σ]i+1; . . . ; [σ]i+m) → ([δi

σ]i ; [δ
i
σ]i+1; . . . ; [δ

i
σ]i+m)

Party i (locally) computes [δσ]i = ⊕[δj
σ]i .

Outline

1 Summary

2 Motivation
Using RAM machines in secure MPC
Example: Private Sampling
Example: Private Bipartite Stable Matching

3 Our Protocol: mLUT

4 Our Subprotocol: g-mOT

5 Summary of Results
Example: Private Sampling
Example: Private Stable Matching

Our Subprotocol: g-mOT

Input

One party holds ∆ = (δ0, . . . , δn−1)

Party i holds [σ]i , a share of σ

Output

Party i holds [δσ]i , a share of ∆[σ]

g-mOT(∆, [σ]1; [σ]2; . . . ; [σ]m) → ([δσ]1; [δσ]2; . . . ; [δσ]m)

Our Subprotocol: g-mOT construction (idea)

Privately convert shares into inputs for efficient PIR

Use techniques to convert PIR into OT

PIR based on LFAH still efficient when using (traditionally
inefficient) special representations of ∆

Ex: database as log n-dimensional 2× . . .× 2 cube
index used by PIR based on binary rep. of index

(Constant round) protocols exist to convert shares to this form

Our Subprotocol: g-mOT construction (idea)

Privately convert shares into inputs for efficient PIR

Use techniques to convert PIR into OT

PIR based on LFAH still efficient when using (traditionally
inefficient) special representations of ∆

Ex: database as log n-dimensional 2× . . .× 2 cube
index used by PIR based on binary rep. of index

(Constant round) protocols exist to convert shares to this form

Our Subprotocol: g-mOT construction (idea)

Privately convert shares into inputs for efficient PIR

Use techniques to convert PIR into OT

PIR based on LFAH still efficient when using (traditionally
inefficient) special representations of ∆

Ex: database as log n-dimensional 2× . . .× 2 cube
index used by PIR based on binary rep. of index

(Constant round) protocols exist to convert shares to this form

Our Subprotocol: g-mOT construction (idea)

Privately convert shares into inputs for efficient PIR

Use techniques to convert PIR into OT

PIR based on LFAH still efficient when using (traditionally
inefficient) special representations of ∆

Ex: database as log n-dimensional 2× . . .× 2 cube

index used by PIR based on binary rep. of index

(Constant round) protocols exist to convert shares to this form

Our Subprotocol: g-mOT construction (idea)

Privately convert shares into inputs for efficient PIR

Use techniques to convert PIR into OT

PIR based on LFAH still efficient when using (traditionally
inefficient) special representations of ∆

Ex: database as log n-dimensional 2× . . .× 2 cube
index used by PIR based on binary rep. of index

(Constant round) protocols exist to convert shares to this form

Our Subprotocol: g-mOT construction (idea)

Privately convert shares into inputs for efficient PIR

Use techniques to convert PIR into OT

PIR based on LFAH still efficient when using (traditionally
inefficient) special representations of ∆

Ex: database as log n-dimensional 2× . . .× 2 cube
index used by PIR based on binary rep. of index

(Constant round) protocols exist to convert shares to this form

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1

, 2

3

4

5

6

7, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7

, 8

Our Subprotocol: g-mOT construction (sketch)

1 Choosers create a threshold LFAH
encryption system

2 Choosers compute first PIR message
using their shares of σ

3 Choosers send the above, with E (σ),
to Database

4 Database uses E (σ) to blind ∆

5 Database runs the PIR protocol

6 Database sends response to Choosers

7 Choosers collaborate to decrypt
response (α− 1 times)

8 Choosers split remaining ciphertext
into shares

Choosers Database

1, 2

3

4

5

6

7, 8

Our subprotocol: g-mOT Cost Analysis

When

Database elements of length `
Security parameter k

Comm. Complexity:

conversion protocol = b log b multiplications [DFK+06]
here, b = |σ| = log n
multiparty multiplication protocol = O(m)
thus, total for conversion protocol = O(m log n log log n)
PIR = O(k log2 n + ` log n) [Lip03]

Round:

Output share conversion protocols require O(log n) rounds
All other parts of the protocol are constant-round

Total:

Comm: O(mk log2 n + m` log n)
Round: O(log n)

Our subprotocol: g-mOT Cost Analysis

When

Database elements of length `
Security parameter k

Comm. Complexity:

conversion protocol = b log b multiplications [DFK+06]
here, b = |σ| = log n
multiparty multiplication protocol = O(m)
thus, total for conversion protocol = O(m log n log log n)
PIR = O(k log2 n + ` log n) [Lip03]

Round:

Output share conversion protocols require O(log n) rounds
All other parts of the protocol are constant-round

Total:

Comm: O(mk log2 n + m` log n)

Round: O(log n)

Our subprotocol: g-mOT Cost Analysis

When

Database elements of length `
Security parameter k

Comm. Complexity:

conversion protocol = b log b multiplications [DFK+06]
here, b = |σ| = log n
multiparty multiplication protocol = O(m)
thus, total for conversion protocol = O(m log n log log n)
PIR = O(k log2 n + ` log n) [Lip03]

Round:

Output share conversion protocols require O(log n) rounds
All other parts of the protocol are constant-round

Total:

Comm: O(mk log2 n + m` log n)
Round: O(log n)

Our subprotocol: Security Claim

Claim:

Our protocol is t-private when the Damg̊ard-Jurik LFAH system is
IND-CPA secure.

in standard model, under Paillier and composite DDH
assumptions [DJ03]

can reduce assumptions: use generic AH system (not LFAH)

w/ generic AH, round complexity increases by polylog factor

less convenient database representation
thus more complex share-conversion operations

Our subprotocol: Security Claim

Claim:

Our protocol is t-private when the Damg̊ard-Jurik LFAH system is
IND-CPA secure.

in standard model, under Paillier and composite DDH
assumptions [DJ03]

can reduce assumptions: use generic AH system (not LFAH)

w/ generic AH, round complexity increases by polylog factor

less convenient database representation
thus more complex share-conversion operations

Outline

1 Summary

2 Motivation
Using RAM machines in secure MPC
Example: Private Sampling
Example: Private Bipartite Stable Matching

3 Our Protocol: mLUT

4 Our Subprotocol: g-mOT

5 Summary of Results
Example: Private Sampling
Example: Private Stable Matching

Improvements to Private Sampling Applications

Summary

Protocol Work Comm. Round

[IMSW07] O(m2n) O(m2 log n(k log n + ` + mk)) O(m log n)
Ours O(m) O(m2 log n(k log n + `)) O(log n)

for comparison purposes, above ignores costs associated with f

above, work = number of invocations of the PIR routine by database

under general AH assumptions, ours remains efficient

Improvements to Private Stable Matching Applications

Summary

Protocol Work Comm. Round

CT-RSA [FGM07] O(n4
√

log n) O(mn3) Õ(n2)

Ours O(n4) O(mn2) Õ(n2)

in the setting of Golle’s private matching algorithm

Thank you.

Thank You.

Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen,
and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation
for equality, comparison, bits and exponentiation.
In Proceedings of the Theory of Cryptography Conference, pages
285–304, 2006.

Ivan Damg̊ard and Mads Jurik.
A length-flexible threshold cryptosystem with applications.
In Information Security and Privacy, pages 350–364, 2003.

Matthew Franklin, Mark Gondree, and Payman Mohassel.
Improved efficiency for private stable matching.
In The Cryptographer’s Track at the RSA Conference (CT-RSA),
2007.

Philippe Golle.
A private stable matching algorithm.
In Financial Crypto (FC ’06), 2006.

Yuval Ishai, Tal Malkin, Martin J. Strauss, and Rebecca N.
Wright.
Private multiparty sampling and approximation of vector
combinations.
In Proceedings of the 34th International Colloquium on
Automata, Languages and Programming (ICALP), 2007.

Helger Lipmaa.
Verifiable homomorphic oblivious transfer and private equality
test.
In Advances in Cryptology – ASIACRYPT ’03, pages 416–433,
2003.

Moni Naor and Kobbi Nissim.
Communication preserving protocols for secure function
evaluation.
In STOC ’01: Proceedings of the 33rd annual ACM Symposium
on Theory of Computing, pages 590–599, 2001.

Backup: Further Work

Develop constant-round mOT protocols

Find natural problems where shared inputs are already in binary
representations, for which this work is very efficient (re: round
complexity)

Develop more efficient techniques for oblivious writes

Find efficient black-box reduction of mOT to 2-party OT

Consider active adversaries

Backup: LFAH

Message Expansion for α-times encryption

Additive Homo. (s + j)k → ηα(s + j)k
Length-Flexible Additive Homo. (s + jξ)k → (s + (j + α)ξ)k

For [DJ03], ξ = 1

Comm. for LFAH-PIR [Lip03]

kξ

2
log2 n +

3kξ

2
log n + ` log n + ` = Θ(k log2 n + ` log n)

database-side comm costs = (ξ log n + s)k

chooser-side comm costs = (ξ
2 log2 n + (s + ξ

2) log n)k

where s = `
k

	Summary
	Motivation
	Using RAM machines in secure MPC
	Example: Private Sampling
	Example: Private Bipartite Stable Matching

	Our Protocol: mLUT
	Our Subprotocol: g-mOT
	Summary of Results
	Example: Private Sampling
	Example: Private Stable Matching

